

Решите неравенство:
Используя свойства логарифмов, преобразуем неравенство:
Перейдём к системе:
Решение первого неравенства: или
Из второго равенства получаем, что
и
Решение третьего неравенства:
Таким образом, решением неравенства является множество
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |


Решите неравенство:
Используя свойства логарифмов, преобразуем неравенство:
Применим к последнему неравенству метод рационализации:
Решение первого неравенства: или
Из второго равенства получаем, что и
Решение третьего неравенства:
Таким образом, получаем, что решением неравенства является промежуток
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |


Решите неравенство:
Сделаем замену и упростим левую и правую части:
Учитывая, что домножая на знаменатель, получаем два случая :
Первый случай (знаменатель положителен):
Второй случай (знаменатель отрицателен):
Тогда
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |


Решите неравенство:
Сделаем замену и упростим левую и правую части:
Учитывая, что получаем:
или
Первый случай:
Второй случай:
Тогда откуда
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |


Решите неравенство:
Используя свойства логарифмов, преобразуем неравенство:
Перейдём к системе:
Решение первого неравенства: или
Из второго равенства получаем, что
и
Решение третьего неравенства:
Таким образом, решением неравенства является множество
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |


Решите неравенство:
Сделаем замену и упростим левую и правую части:
Учитывая, что получаем:
или
Первый случай:
решений нет.
Второй случай:
Тогда
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Наверх