Варианты заданий
Версия для печати и копирования в MS Word
1

Ос­но­ва­ни­ем пря­мой че­ты­рех­уголь­ной приз­мы ABCDA'B'C'D' яв­ля­ет­ся квад­рат ABCD со сто­ро­ной 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , вы­со­та приз­мы равна 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та . Точка K  — се­ре­ди­на ребра BB'. Через точки K и С' про­ве­де­на плос­кость α, па­рал­лель­ная пря­мой BD'.

а)  До­ка­жи­те, что се­че­ние приз­мы плос­ко­стью α яв­ля­ет­ся рав­но­бед­рен­ным тре­уголь­ни­ком.

б)  Най­ди­те пе­ри­метр тре­уголь­ни­ка, яв­ля­ю­ще­го­ся се­че­ни­ем приз­мы плос­ко­стью α.


Аналоги к заданию № 509821: 514244 Все


2

Ос­но­ва­ни­ем пря­мой четырёхуголь­ной приз­мы ABCDA1B1C1D1 яв­ля­ет­ся квад­рат ABCD со сто­ро­ной 5 ко­рень из 2 , вы­со­та приз­мы равна 2 ко­рень из 1 4. Точка K  — се­ре­ди­на ребра BB1. Через точки K и C1 про­ве­де­на плос­кость α па­рал­лель­ная пря­мой BD1.

а)  До­ка­жи­те, что се­че­ние приз­мы плос­ко­стью α яв­ля­ет­ся рав­но­бед­рен­ным тре­уголь­ник.

б)  Най­ди­те пе­ри­метр тре­уголь­ни­ка, яв­ля­ю­ще­го­ся се­че­ни­ем приз­мы плос­ко­стью α.


Аналоги к заданию № 509821: 514244 Все