Тип 18 № 512892 

Задача с параметром. Расположение корней квадратного трехчлена
i
Найдите все значения a, при которых уравнение

имеет ровно два различных корня.
Решение. Пусть
Если
тогда
и
Если
тогда 
Обозначим
Исходное уравнение имеет ровно два корня в двух случаях:
1) когда уравнение
имеет всего один корень и этот корень больше 1;
2) когда уравнение
имеет ровно два корня, один из которых больше 1, а другой меньше 1.
Рассмотрим эти случаи:
1) Уравнение
имеет ровно один корень, если дискриминант равен нулю:

При
уравнение
имеет единственный корень
В этом случае исходное уравнение не имеет корней.
При
уравнение
имеет единственный корень
В этом случае исходное уравнение имеет два корня.
2) Графиком функции
является парабола, ветви которой направлены вверх. Для того чтобы уравнение
имело два корня, один из которых больше 1, а другой меньше 1, необходимо и достаточно, чтобы выполнялось неравенство


Ответ: 
Ответ: 