Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 19 № 520808
i

В шко­лах № 1 и № 2 уча­щи­е­ся пи­са­ли тест. Из каж­дой школы тест пи­са­ли по край­ней мере два уча­щих­ся, а сум­мар­но тест писал 51 уча­щий­ся. Каж­дый уча­щий­ся, пи­сав­ший тест, на­брал на­ту­раль­ное ко­ли­че­ство бал­лов. Ока­за­лось, что в каж­дой школе сред­ний балл был целым чис­лом. После этого один из уча­щих­ся, пи­сав­ших тест, пе­ре­шел из школы № 1 в школу № 2, а сред­ние баллы за тест были пе­ре­счи­та­ны в обеих шко­лах.

а)  Мог ли сред­ний балл в школе № 1 вы­рас­ти в два раза?

б)  Сред­ний балл в школе № 1 вырос на 10%, сред­ний балл в школе № 2 также вырос на 10%. Мог ли пер­во­на­чаль­ный сред­ний балл в школе № 2 рав­нять­ся 1?

в)  Сред­ний балл в школе № 1 вырос на 10%, сред­ний балл в школе № 2 также вырос на 10%. Най­ди­те наи­мень­шее зна­че­ние пер­во­на­чаль­но­го сред­не­го балла в школе № 2.


Аналоги к заданию № 520808: 520884 520920 520858 Все


2
Тип 19 № 520884
i

В шко­лах № 1 и № 2 уча­щи­е­ся пи­са­ли тест. Из каж­дой школы тест пи­са­ли по край­ней мере два уча­щих­ся, а сум­мар­но тест пи­са­ли 9 уча­щих­ся. Каж­дый уча­щий­ся, пи­сав­ший тест, на­брал на­ту­раль­ное ко­ли­че­ство бал­лов. Ока­за­лось, что в каж­дой школе сред­ний балл был целым чис­лом. После этого, один из уча­щих­ся, пи­сав­ших тест, пе­ре­шел из школы № 1 в школу № 2, а сред­ние баллы за тест были пе­ре­счи­та­ны в обеих шко­лах.

а)  Мог ли сред­ний балл в школе № 1 умень­шить­ся в 10 раз?

б)  Сред­ний балл в школе № 1 умень­шил­ся на 10%, сред­ний балл в школе № 2 также умень­шил­ся на 10%. Мог ли пер­во­на­чаль­ный сред­ний балл в школе № 2 рав­нять­ся 7?

в)  Сред­ний балл в школе № 1 умень­шил­ся на 10%, сред­ний балл в школе № 2 также умень­шил­ся на 10%. Най­ди­те наи­мень­шее зна­че­ние пер­во­на­чаль­но­го сред­не­го балла в школе № 2.


Аналоги к заданию № 520808: 520884 520920 520858 Все


3
Тип 19 № 520920
i

В шко­лах № 1 и № 2 уча­щи­е­ся пи­са­ли тест. Из каж­дой школы тест пи­са­ли по край­ней мере два уча­щих­ся, а сум­мар­но тест пи­са­ли 50 уча­щих­ся. Каж­дый уча­щий­ся, пи­сав­ший тест, на­брал на­ту­раль­ное ко­ли­че­ство бал­лов. Ока­за­лось, что в каж­дой школе сред­ний балл был целым чис­лом. После этого, один из уча­щих­ся, пи­сав­ших тест, пе­ре­шел из школы № 1 в школу № 2, а сред­ние баллы за тест были пе­ре­счи­та­ны в обеих шко­лах.

а)  Мог ли сред­ний балл в школе № 1 умень­шить­ся в 2 раза?

б)  Сред­ний балл в школе № 1 умень­шил­ся на 2%, сред­ний балл в школе № 2 также умень­шил­ся на 2%. Мог ли пер­во­на­чаль­ный сред­ний балл в школе № 2 рав­нять­ся 9?

в)  Сред­ний балл в школе № 1 умень­шил­ся на 2%, сред­ний балл в школе № 2 также умень­шил­ся на 2%. Най­ди­те наи­мень­шее зна­че­ние пер­во­на­чаль­но­го сред­не­го балла в школе № 2.


Аналоги к заданию № 520808: 520884 520920 520858 Все


4
Тип 19 № 520858
i

В шко­лах № 1 и № 2 уча­щи­е­ся пи­са­ли тест. Из каж­дой школы тест пи­са­ли по край­ней мере два уча­щих­ся, а сум­мар­но тест писал 81 уча­щий­ся. Каж­дый уча­щий­ся, пи­сав­ший тест, на­брал на­ту­раль­ное ко­ли­че­ство бал­лов. ока­за­лось, что в каж­дой школе сред­ний балл был целым чис­лом. После этого, один из уча­щих­ся, пи­сав­ших тест, пе­ре­шел из школы № 1 в школу № 2, а сред­ние баллы за тест были пе­ре­счи­та­ны в обеих шко­лах.

а)  Мог ли сред­ний балл в школе № 1 вы­рас­ти в два раза?

б)  Сред­ний балл в школе № 1 вырос на 20%, сред­ний балл в школе № 2 также вырос на 20%. Мог ли пер­во­на­чаль­ный сред­ний балл в школе № 2 рав­нять­ся 1?

в)  Сред­ний балл в школе № 1 вырос на 20%, сред­ний балл в школе № 2 также вырос на 20%. Най­ди­те наи­мень­шее зна­че­ние пер­во­на­чаль­но­го сред­не­го балла в школе № 2.


Аналоги к заданию № 520808: 520884 520920 520858 Все