Угол между скрещивающимися прямыми
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
Длина ребра правильного тетраэдра ABCD равна 1. M — середина ребра BC, L — середина ребра AB.
а) Докажите, что плоскость, параллельная прямой CL и содержащая прямую DM, делит ребро AB в отношении 3 : 1, считая от вершины A.
б) Найдите угол между прямыми DM и CL.
В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 8. Точка L — середина ребра SC. Тангенс угла между прямыми BL и SA равен
а) Пусть O — центр основания пирамиды. Докажите, что прямые BO и LO перпендикулярны.
б) Найдите площадь поверхности пирамиды.
Сторона основания правильной треугольной призмы ABCA1B1C1 равна 8. Высота этой призмы равна 6.
а) Докажите, что плоскость, содержащая прямую AB1 и параллельная прямой CA1 проходит через середину ребра BC.
б) Найти угол между прямыми CA1 и AB1.
В основании прямой призмы ABCA1B1C1 лежит равнобедренный прямоугольный треугольник ABC с гипотенузой AB, равной Высота призмы равна 6.
а) Докажите, что плоскость, содержащая прямую AC1 и параллельная прямой CB1 проходит через середину ребра A1B1.
б) Найдите угол между прямыми AC1 и CB1.
В пирамиде DABC прямые, содержащие ребра DC и AB, перпендикулярны.
а) Постройте сечение плоскостью, проходящей через точку E — середину ребра DB, и параллельно DC и AB. Докажите, что получившееся сечение является прямоугольником.
б) Найдите угол между диагоналями этого прямоугольника, если DC = 24, AB = 10.
Пройти тестирование по этим заданиям

