Сечения круглых тел
Плоскость α пересекает два шара, имеющих общий центр. Площадь сечения меньшего шара этой плоскостью равна 8. Плоскость β, параллельная плоскости α, касается меньшего шара, а площадь сечения этой плоскостью большего шара равна 5.
а) Докажите, что сечение шара плоскостью α есть круг.
б) Найдите площадь сечения большего шара плоскостью α.
Загрузка решений доступна для зарегистрировавшихся пользователей
Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки
а) Докажите, что угол меньше
б) Найдите площадь сечения конуса плоскостью ABP.
Загрузка решений доступна для зарегистрировавшихся пользователей
Плоскость α пересекает плоскости нижнего и верхнего оснований цилиндра по прямым ВС и AD соответственно, причем AD : BC = 5 : 4, а ось цилиндра — в точке Е и делит отрезок, соединяющий центры оснований цилиндра, в отношении 2 : 1, считая от нижнего основания.
а) Прямая DE пересекает плоскость нижнего основания в точке Р. Докажите, что боковая поверхность цилиндра делит отрезок DP в отношении 2 : 1.
б) Найдите площадь сечения цилиндра плоскостью α, если радиус основания цилиндра
Загрузка решений доступна для зарегистрировавшихся пользователей