И. В. Яковлев: Материалы по математике 2011 год
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Бесконечная арифметическая прогрессия, состоящая из различных натуральных чисел, первый член которой меньше 10, не содержит ни одного числа вида Какое наименьшее значение может принимать сумма первых 10 членов этой прогрессии?
На следующей странице вам будет предложено проверить их самостоятельно.
Набор состоит из 33 натуральных чисел, среди которых есть числа 3, 4 и 5.
Среднее арифметическое любых 27 чисел этого набора меньше 2.
а) Может ли такой набор содержать ровно 13 единиц?
б) Может ли такой набор содержать менее 13 единиц?
в) Докажите, что в любом таком наборе есть несколько чисел, сумма которых равна 28.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано более 42, но менее 54 целых чисел. Среднее арифметическое этих чисел равно −7, среднее арифметическое всех положительных из них равно 6, а среднее арифметическое всех отрицательных из них равно −12.
а) Сколько чисел написано на доске?
б) Каких чисел больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?
На следующей странице вам будет предложено проверить их самостоятельно.
Можно ли привести пример пяти различных натуральных чисел, произведение которых равно 1512 и
а) пять;
б) четыре;
в) три
из них образуют геометрическую прогрессию?
На следующей странице вам будет предложено проверить их самостоятельно.
Все члены геометрической прогрессии — различные натуральные числа, заключенные между числами 210 и 350.
а) может ли такая прогрессия состоять из четырех членов?
б) может ли такая прогрессия состоять из пяти членов?
На следующей странице вам будет предложено проверить их самостоятельно.