А. Ларин. Тренировочный вариант № 350.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Основание прямой треугольной призмы ABCA1B1C1 — треугольник ABC, в котором AB = AC = 8, а один из углов равен 60°. На ребре AA1 отмечена точка P так, что AP : PA1 = 1 : 2. Расстояние между прямыми
а) Докажите, что основания высот треугольников ABC и PBC, проведенных к стороне BC, совпадают.
б) Найдите тангенс угла между плоскостями ABC и CBP.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В прямоугольнике ABCD, в котором а AB = 6, расположены две окружности. Окружность с центром в точке K, радиус которой равен 2, касается сторон AB и AD. Окружность с центром в точке L, радиус которой равен 1, касается стороны CD и первой окружности.
а) Докажите, что точки A, K, L лежат на одной прямой.
б) Найдите площадь треугольника CLM, если M — основание перпендикуляра, опущенного из вершины B на прямую, проходящую через точки K и L.
На следующей странице вам будет предложено проверить их самостоятельно.
15 января планируется взять кредит в банке на сумму 600 тысяч рублей на 24 месяца. Условия его возврата таковы:
— 1‐го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2‐го по 14‐е число каждого месяца необходимо выплатить часть долга;
— 15‐го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15‐е число предыдущего месяца.
На сколько рублей увеличится сумма выплат, если взять кредит с такими же условиями на 30 месяцев?
На следующей странице вам будет предложено проверить их самостоятельно.
Найти все значения параметра a, при каждом из которых система уравнений
имеет единственное решение.
На следующей странице вам будет предложено проверить их самостоятельно.
На сайте проводится опрос, кого из футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста — доля голосов, отданных за него, в процентах, округленная до целого числа. Например, числа 7,2; 9,5 и 11,8 округляются до 7; 10 и 12 соответственно.
а) Всего проголосовало 17 посетителей сайта. Мог ли рейтинг некоторого футболиста быть равным 27?
б) Пусть посетители сайта отдавали голоса за одного из трех футболистов. Могла ли сумма рейтингов быть больше 100?
в) На сайте отображалось, что рейтинг некоторого футболиста равен 8. Это число не изменилось и после того, как Петя отдал свой голос за этого футболиста. При каком наименьшем числе отданных за всех футболистов голосов, включая Петин голос, такое возможно?
На следующей странице вам будет предложено проверить их самостоятельно.