А. Ларин: Тренировочный вариант № 106.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Дано уравнение
а) Решите уравнение.
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна а боковое ребро равно 2. Точка M — середина ребра AA1. Найдите расстояние от точки M до плоскости DA1C1.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Семья Ивановых ежемесячно вносит плату за коммунальные услуги, телефон и электричество. Если бы коммунальные услуги подорожали на 50%, то общая сумма платежа увеличилась бы на 35%. Если бы электричество подорожало на 50%, то общая сумма платежа увеличилась бы на 10%. Какой процент от общей суммы платежа приходится на телефон?
На следующей странице вам будет предложено проверить их самостоятельно.
Найти все значения параметра а, при каждом из которых уравнение имеет ровно один корень. Укажите этот корень для каждого такого значения а.
На следующей странице вам будет предложено проверить их самостоятельно.
a) Можно ли числа от 1 до 16 расположить по кругу так, чтобы сумма любых двух соседних чисел была бы квадратом натурального числа?
Б) Можно ли числа от 1 до 16 расположить в строку так, чтобы сумма любых двух соседних чисел была бы квадратом натурального числа?
В) Можно ли числа от 1 до 16 расположить в строку так, чтобы каждое число, начиная со второго, было бы делителем суммы всех предыдущих?
На следующей странице вам будет предложено проверить их самостоятельно.