Варианты заданий
Версия для печати и копирования в MS Word
1
Тип 17 № 554418
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC вы­со­ты BB1 и CC1 пе­ре­се­ка­ют­ся в точке H.

а)  До­ка­жи­те, что \angle BAH=\angle BB_1C_1.

б)  Най­ди­те рас­сто­я­ние от цен­тра опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC до сто­ро­ны BC, если B1C1  =  12 и \angle BAC=60 гра­ду­сов.


Аналоги к заданию № 554418: 656585 656593 Все


2
Тип 17 № 656585
i

Дан ост­ро­уголь­ный тре­уголь­ник ABC. Его вы­со­ты BB1 и CC1 пе­ре­се­ка­ют­ся в точке H.

а)  До­ка­жи­те, что \angle B A H = \angle B B_1 C_1.

б)  Най­ди­те рас­сто­я­ние от цен­тра опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC до сто­ро­ны BC, если C_1 B_1 = 18, а  \angle B A C = 30 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .


Аналоги к заданию № 554418: 656585 656593 Все


3
Тип 17 № 656593
i

Вы­со­ты BB1 и CC1 ост­ро­уголь­но­го тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке H.

а)  До­ка­жи­те, что \angle B B_1 C_1 = \angle B A H.

б)  Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка ABC, до сто­ро­ны BC, если B_1 C_1 = 10 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та и \angle B A C = 60 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .


Аналоги к заданию № 554418: 656585 656593 Все