Сечения призм
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
В основании правильной треугольной призмы ABCA1B1C1 лежит треугольник со стороной 6. Высота призмы равна 4. Точка N — середина ребра A1C1.
а) Постройте сечение призмы плоскостью BAN.
б) Найдите периметр этого сечения.
Основанием прямой четырехугольной призмы ABCDA'B'C'D' является квадрат ABCD со стороной высота призмы равна
Точка K — середина ребра BB'. Через точки K и С' проведена плоскость α, параллельная прямой BD'.
а) Докажите, что сечение призмы плоскостью α является равнобедренным треугольником.
б) Найдите периметр треугольника, являющегося сечением призмы плоскостью α.
В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 11, а боковое ребро AA1 = 7. Точка K принадлежит ребру B1C1 и делит его в отношении 8 : 3, считая от вершины B1.
а) Докажите, что точки A и C равноудалены от плоскости, проходящей через точки B, D и K.
б) Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и K.
В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1 = 7. Точка M принадлежит ребру A1D1 и делит его в отношении 2 : 3, считая от вершины D1.
а) Докажите, что точки A и C равноудалены от плоскости, проходящей через точки B, D и M.
б) Найдите площадь сечения этой призмы плоскостью, проходящей через точки B, D и M.
Дана правильная призма ABCA1B1C1, у которой сторона основания AB = 4, а боковое ребро AA1 = 9. Точка M — середина ребра AC, а на ребре AA1 взята точка T так, что AT = 5.
а) Докажите, что плоскость BB1M делит отрезок C1T пополам.
б) Плоскость BTC1 делит отрезок MB1 на две части. Найдите длину меньшей из них.
Пройти тестирование по этим заданиям

