Задания 16 (С4) ЕГЭ 2016
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что
а) Докажите, что точка I лежит на окружности, описанной около треугольника BOC.
б) Найдите угол OIH, если
На следующей странице вам будет предложено проверить их самостоятельно.
В остроугольном треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно.
а) Докажите, что прямые ЕН и АС параллельны.
б) Найдите отношение ЕН : АС, если угол АВС равен 30°.
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M.
а) Докажите, что отрезок BM не больше утроенного радиуса вписанной в треугольник окружности.
б) Найдите если известно, что отрезок ВМ в
На следующей странице вам будет предложено проверить их самостоятельно.
Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.
а) Докажите, что
б) Найдите отношение CK и KE, если
На следующей странице вам будет предложено проверить их самостоятельно.
В прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L.
а) Докажите, что треугольники AML и BLC подобны.
б) Найдите отношение площадей этих треугольников, если
На следующей странице вам будет предложено проверить их самостоятельно.
Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите, в каком отношении высота этого треугольника делит сторону BC.
На следующей странице вам будет предложено проверить их самостоятельно.
В прямоугольном треугольнике АВС с прямым углом С точки М и N — середины катетов АС и ВС соответственно, СН — высота.
а) Докажите, что прямые МН и NH перпендикулярны.
б) Пусть Р — точка пересечения прямых АС и NH, а Q — точка пересечения прямых BC и МН. Найдите площадь треугольника PQM, если АН = 4 и ВН = 2.
На следующей странице вам будет предложено проверить их самостоятельно.
На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P.
а) Докажите, что прямые PM и QM перпендикулярны.
б) Найдите PQ, если AM = 1, BM = 3, а Q — середина дуги MB.
На следующей странице вам будет предложено проверить их самостоятельно.
Прямая, проходящая через вершину В прямоугольника ABCD, перпендикулярна диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D.
а) Докажите, что BM и ВD делят угол В на три равных угла.
б) Найдите расстояние от точки пересечения диагоналей прямоугольника ABCD до прямой СМ, если
На следующей странице вам будет предложено проверить их самостоятельно.