Вариант № 24900078

Задания 16 (С4) ЕГЭ 2019

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 16 № 525120

Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите QN, если отрезки DP и PC перпендикулярны, AB = 21, BC = 4, CD = 20, AD = 17.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 16 № 525141

Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите радиус окружности, описанной около треугольника MPQ, если прямая DP перпендикулярна прямой PC, AB = 25, BC = 3, CD = 28, AD = 20.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 16 № 525243

Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите длину отрезка QN, если BC = 4,5, AD = 21,5, AB = 26, CD = 25, а угол CPD — прямой.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 526016

Дана трапеция ABCD с основаниями AD и BC. Точки M и N — середины сторон AB и CD соответственно. Окружность проходит через точки B и C и пересекает отрезки BM и CN в точках P и Q, отличных от концов отрезка, соответственно.

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите PM, если отрезки AQ и BQ перпендикулярны, AB = 15, BC = 1, CD = 17, AD = 9.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 16 № 525380

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите радиус окружности, описанной около треугольника BCD, если известно, что радиус первой окружности равен 4, а радиус второй окружности равен 1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 16 № 526218

Около \Delta ABC описана окружность. Прямая BO, где O — центр вписанной окружности, вторично пересекает описанную окружность в точке P.

а) Докажите, что OP=AP.

б) Найдите расстояние от точки P до прямой AC, если \angle ABC=120 градусов, а радиус описанной окружности равен 18.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 16 № 526255

Около остроугольного треугольника ABC с различными сторонами описали окружность с диаметром BN. Высота BH пересекает эту окружность в точке K.

а) Докажите, что AN=CK.

б) Найдите KN, если \angle BAC=35 градусов, \angle ACB=65 градусов, а радиус окружности равен 12.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

8
Тип 16 № 526292

Точка O — центр вписанной в треугольник ABC окружности. Прямая OB вторично пересекает описанную около этого треугольника окружность в точке P.

а) Докажите, что \angle POC=\angle PCO.

б) Найдите площадь треугольника APC, если радиус описанной около треугольника ABC окружности равен 4, а \angle ABC = 120 градусов.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

9
Тип 16 № 526531

Точка O — центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около этого треугольника окружность в точке P.

а) Докажите, что \angle POC=\angle PCO.

б) Найдите площадь треугольника APC, если радиус описанной около треугольника ABC окружности равен 8, а \angle ABC = 60 градусов.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

10
Тип 16 № 526342

В остроугольном треугольнике ABC, \angle A=60 градусов. Высоты BN и CM треугольника ABC пересекаются в точке H. Точка O — центр окружности, описанной около \Delta ABC.

а) Докажите, что AH=AO.

б) Найдите площадь \Delta AHO, если BC=6 корень из 3, \angle ABC = 45 градусов.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

11
Тип 16 № 526334

В прямоугольном треугольнике ABC точка M лежит на катете AC, а точка N лежит на продолжении катета BC за точку C, причём CM=BC и CN=AC. Отрезки CP и CQ — биссектрисы треугольников ACB и NCM соответственно.

а) Докажите, что CP и СQ перпендикулярны.

б) Найдите PQ, если BC=3, а AC=5.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

12
Тип 16 № 526705

Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части.

а) Докажите, что треугольник ABC равнобедренный.

б) Найдите, в каком отношении высота этого треугольника делит сторону BC.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

13
Тип 16 № 526677

Из вершины С прямого угла прямоугольного треугольника ABC проведена высота CH.

а) Докажите, что отношение площадей кругов, построенных на отрезках AH и BH соответственно как на диаметрах равно  тангенс в степени 4 \angle ABC.

б) Пусть точка O1 — центр окружности диаметра AH, вторично пересекающей отрезок AC в точке P, а точка O2 — центр окружности с диаметром BH, вторично пересекающей отрезок BC в точке Q. Найдите площадь четырёхугольника O1PQO2, если AC=22, BC=18.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 16 № 527245

Две окружности разных радиусов касаются внешним образом в точке K. Прямая касается первой окружности в точке А, а второй окружности в точке В. Луч BK пересекает первую окружность в точке D, луч AK пересекает вторую окружность в точке С.

а) Докажите, что четырёхугольник ABCD — трапеция.

б) Найдите радиус окружности, описанной около треугольника BCD, если радиус первой окружности равен 1, а радиус второй окружности равен 4.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.