математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Каталог заданий.
Сечения многогранников
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 14 № 507887

В основании правильной треугольной призмы ABCA1B1C1 лежит треугольник со стороной 6. Высота призмы равна 4. Точка N — середина ребра A1C1.

а) Постройте сечение призмы плоскостью BAN.

б) Найдите периметр этого сечения.


Аналоги к заданию № 507887: 507910 510460 Все

Источник:

2
Задание 14 № 508233

В правильной четырехугольной пирамиде PABCD, все ребра которой равны 4, точка K ― середина бокового ребра AP.

а) Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной прямым PB и BC.

б) Найдите площадь сечения.


Аналоги к заданию № 508233: 508254 511582 Все

Источник: Пробный эк­за­мен Санкт-Петербург 2015. Вариант 1.

3
Задание 14 № 509022

На ребре прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E = 6EA. Точка T — середина ребра B1C1. Известно, что AD = 12, AA1 = 14.

а) Докажите, что плоскость ETD1 делит ребро BB1 в отношении 4 : 3.

б) Найдите площадь сечения параллелепипеда плоскостью ETD1.


Аналоги к заданию № 509022: 509159 Все

Источник:

4
Задание 14 № 509580

На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E : EA = 5 : 3, на ребре BB1 — точка F так, что B1F : FB = 5 : 11, а точка T − середина ребра B1C1. Известно, что AD = 10, AA1 = 16.

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите площадь сечения параллелепипеда плоскостью EFT.


Аналоги к заданию № 509580: 509927 Все


5
Задание 14 № 509821

Основанием прямой четырехугольной призмы ABCDA'B'C'D' является квадрат ABCD со стороной , высота призмы равна Точка K — середина ребра BB'. Через точки K и С' проведена плоскость α, параллельная прямой BD'.

а) Докажите, что сечение призмы плоскостью α является равнобедренным треугольником.

б) Найдите периметр треугольника, являющегося сечением призмы плоскостью α.


Аналоги к заданию № 509821: 514244 Все

Источник: ЕГЭ по математике — 2015. До­сроч­ная волна, ре­зерв­ный день (часть С).

6
Задание 14 № 509927

На ребре AA1 прямоугольного параллелепипеда ABCDA1B1C1D1 взята точка E так, что A1E : EA = 6 : 1, на ребре BB1 — точка F так, что B1F : FB = 3 : 4, а точка T — середина ребра B1C1. Известно, что AD = 30, AA1 = 35.

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите площадь сечения параллелепипеда плоскостью EFT.


7
Задание 14 № 509948

В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 13. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.


Аналоги к заданию № 509948: 511602 513095 513096 510107 Все

Источник: ЕГЭ — 2015 по математике. Ос­нов­ная волна 04.06.2015. Ва­ри­ант 1 (Часть С).

8
Задание 14 № 510107

В правильной треугольной пирамиде SABC сторона основания AB равна 24, а боковое ребро SA равно 19. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.


9
Задание 14 № 512998

Дана правильная призма ABCA1B1C1, у которой стороны основания AB = 4, а боковое ребро AA1 = 9. Точка M — середина ребра AC, а на ребре AA1 взята точка T так, что AT = 5.

а) Докажите, что плоскость BB1M делит отрезок C1T пополам.

б) Плоскость BTC1 делит отрезок MB1 на две части. Найдите длину меньшей из них.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Решение · ·

10
Задание 14 № 513266

Дана правильная шестиугольная пирамида SABCDEF с вершиной S.

а) Докажите, что плоскость, проходящая через середины рёбер SA и SD и вершину C, делит апофему грани ASB в отношении 2 : 1, считая от вершины S.

б) Найдите отношение, в котором плоскость, проходящая через середины рёбер SA и SD и вершину C, делит ребро SF, считая от вершины S.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Решение · ·

11
Задание 14 № 507202

Площадь основания правильной четырёхугольной пирамиды SABCD равна 64.

а) Постройте прямую пересечения плоскости SAC и плоскости, проходящей через вершину S этой пирамиды, середину стороны АВ и центр основания.

б) Найдите площадь боковой поверхности этой пирамиды, если площадь сечения пирамиды плоскостью SAC равна 64.


Аналоги к заданию № 507202: 515826 Все


12
Задание 14 № 513606

В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB равна 3, а боковое ребро На рёбрах AB, A1D1 и C1D1 отмечены точки M, N и K соответственно, причём AM = A1N = C1K = 1.

а) Пусть L — точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL — квадрат.

б) Найдите площадь сечения призмы плоскостью MNK.

Источник: ЕГЭ по ма­те­ма­ти­ке 28.03.2016. До­сроч­ная волна, ва­ри­ант 101

13
Задание 14 № 513684

В правильной четырехугольной призме ABCDA1B1C1D1 точка K делит боковое ребро AA1 в отношении AK : KA1 = 1 : 2. Через точки B и K проведена плоскость параллельная прямой AC и пересекающая ребро DD1 в точке M.

а) Докажите, что плоскость делит ребро DD1 в отношении DM : MD1 = 2 : 1.

б) Найдите площадь сечения, если известно, что AB = 4, AA1 = 6.


Аналоги к заданию № 513684: 513714 Все

Источник: Пробный эк­за­мен по про­филь­ной математике Санкт-Петербург 05.04.2016. Ва­ри­ант 1.
Решение · ·

14
Задание 14 № 514654

В прямоугольном параллелепипеде ABCDA1B1C1D1 известны длины рёбер: AB = 4, BC = 3, AA1 = 2. Точки P и Q — середины рёбер A1B1 и CC1 соответственно. Плоскость APQ пересекает ребро B1C1 в точке U.

а) Докажите, что B1U : UC1 = 2 : 1.

б) Найдите площадь сечения параллелепипеда ABCDA1B1C1D1 плоскостью APQ.

Источник: За­да­ния 14 (С2) ЕГЭ 2016

15
Задание 14 № 519473

Дана правильная четырехугольная призма ABCDA1B1C1D1. На ребре AA1 отмечена точка K так, что AK : KA1 = 1 : 2. Плоскость проходит через точки B и K параллельно прямой AC. Эта плоскость пересекает ребро DD1 в точке M.

а) Докажите, что

б) Найдите площадь сечения, если

Источник: Досрочный ЕГЭ по математике (Центр) 31.03.2018, Досрочный ЕГЭ — 2018. 31.03.2018 (C часть).

16
Задание 14 № 520496

В основании правильной пирамиды PABCD лежит квадрат ABCD со стороной 6. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.

а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.

б) Найдите площадь сечения пирамиды.


Аналоги к заданию № 520496: 520516 520659 520700 520681 Все


17
Задание 14 № 520974

На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ:OB=1:2. Точка P — середина ребра AS.

а) Докажите, что плоскость DPQ перпендикулярна плоскости основания пирамиды.

б) Найдите площадь сечения DPQ, если площадь сечения DSB равна 6.

Источник: ЕГЭ — 2018. Резервный день 25.06.2018. Вариант 501 (C часть).

18
Задание 14 № 520981

На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ:OB=1:2. Точка P — середина ребра AS.

а) Докажите, что плоскость DPQ перпендикулярна плоскости основания пирамиды.

б) Найдите площадь сечения DPQ, если площадь сечения DSB равна

Источник: ЕГЭ — 2018. Резервный день 25.06.2018. Вариант 502 (C часть).

Пройти тестирование по этим заданиям