Вариант № 11665385

Задания 19 (С7) ЕГЭ 2016

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 19 № 513630
i

Мно­же­ство чисел назовём хо­ро­шим, если его можно раз­бить на два под­мно­же­ства с оди­на­ко­вой сум­мой чисел.

а)  Яв­ля­ет­ся ли мно­же­ство {200; 201; 202; ...; 299} хо­ро­шим?

б)  Яв­ля­ет­ся ли мно­же­ство {2; 4; 8; ...; 2100} хо­ро­шим?

в)  Сколь­ко хо­ро­ших четырёхэле­мент­ных под­мно­жеств у мно­же­ства {1; 2; 4; 5; 7; 9; 11}?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 19 № 514742
i

На доске на­пи­са­ны числа 2 и 3. За один ход два числа a и b, за­пи­сан­ные на доске, за­ме­ня­ют­ся на два числа: или a + b и 2a − 1, или a + b и 2b − 1 (на­при­мер, из чисел 2 и 3 можно по­лу­чить либо 3 и 5, либо 5 и 5).

а)  При­ве­ди­те при­мер по­сле­до­ва­тель­но­сти ходов, после ко­то­рых одно из двух чисел, на­пи­сан­ных на доске, ока­жет­ся чис­лом 13.

б)  Может ли после 200 ходов одно из двух чисел, на­пи­сан­ных на доске, ока­зать­ся чис­лом 400?

в)  Сде­ла­ли 513 ходов, причём на доске ни­ко­гда не было на­пи­са­но од­но­вре­мен­но двух рав­ных чисел. Какое наи­мень­шее зна­че­ние может при­ни­мать раз­ность боль­ше­го и мень­ше­го из по­лу­чен­ных чисел?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 19 № 514479
i

На доске на­пи­са­ны числа 1, 2, 3, ..., 30. За один ход раз­ре­ша­ет­ся сте­реть про­из­воль­ные три числа, сумма ко­то­рых мень­ше 35 и от­лич­на от каж­дой из сумм троек чисел, стёртых на преды­ду­щих ходах.

а)  При­ве­ди­те при­мер по­сле­до­ва­тель­ных 5 ходов.

б)  Можно ли сде­лать 10 ходов?

в)  Какое наи­боль­шее число ходов можно сде­лать?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 19 № 514525
i

По­сле­до­ва­тель­ность  a_1, a_2, \ldots, a_n левая круг­лая скоб­ка n боль­ше или равно 3 пра­вая круг­лая скоб­ка со­сто­ит из на­ту­раль­ных чисел, причём каж­дый член по­сле­до­ва­тель­но­сти, кроме пер­во­го и по­след­не­го, боль­ше сред­не­го ариф­ме­ти­че­ско­го со­сед­них сто­я­щих рядом с ним чле­нов.

а)  При­ве­ди­те при­мер такой по­сле­до­ва­тель­но­сти, со­сто­я­щей из четырёх чле­нов, сумма ко­то­рых равна 50.

б)  Может ли такая по­сле­до­ва­тель­ность со­сто­ять из шести чле­нов и со­дер­жать два оди­на­ко­вых числа?

в)  Какое наи­мень­шее зна­че­ние может при­ни­мать сумма чле­нов такой по­сле­до­ва­тель­но­сти при n  =  10?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 19 № 514743
i

В шах­ма­ты можно вы­иг­рать, про­иг­рать или сыг­рать вни­чью. Шах­ма­тист за­пи­сы­ва­ет ре­зуль­тат каж­дой сыг­ран­ной им пар­тии и после каж­дой пар­тии под­счи­ты­ва­ет три по­ка­за­те­ля: «по­бе­ды»  — про­цент побед, округлённый до це­ло­го, «ничьи»  — про­цент ни­чьих, округлённый до це­ло­го, и «по­ра­же­ния», рав­ные раз­но­сти 100 и суммы по­ка­за­те­лей «побед» и «ни­чьих». (На­при­мер, число 13,2 округ­ля­ет­ся до 13, число 14,5 округ­ля­ет­ся до 15, число 16,8 округ­ля­ет­ся до 17).

а)  Может ли в какой-⁠то мо­мент по­ка­за­тель «побед» рав­нять­ся 17, если было сыг­ра­но менее 50 пар­тий?

б)  Может ли после вы­иг­ран­ной пар­тии уве­ли­чить­ся по­ка­за­тель «по­ра­же­ний»?

в)  Одна из пар­тий была про­иг­ра­на. При каком наи­мень­шем ко­ли­че­стве сыг­ран­ных пар­тий по­ка­за­тель «по­ра­же­ний» может быть рав­ным 1?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 19 № 514744
i

Рас­смот­рим част­ное трёхзнач­но­го числа, в за­пи­си ко­то­ро­го нет нулей, и про­из­ве­де­ния его цифр.

а)  При­ве­ди­те при­мер числа, для ко­то­ро­го это част­ное равно  дробь: чис­ли­тель: 113, зна­ме­на­тель: 27 конец дроби .

б)  Может ли это част­ное рав­нять­ся  дробь: чис­ли­тель: 125, зна­ме­на­тель: 27 конец дроби ?

в)  Какое наи­боль­шее зна­че­ние может при­ни­мать это част­ное, если оно равно не­со­кра­ти­мой дроби со зна­ме­на­те­лем 27?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 514608
i

На доске на­пи­са­но 30 чисел: де­сять «5», де­сять «4» и де­сять «3». Эти числа раз­би­ва­ют на две груп­пы, в каж­дой из ко­то­рых есть хотя бы одно число. Сред­нее ариф­ме­ти­че­ское чисел в пер­вой груп­пе равно А, сред­нее ариф­ме­ти­че­ское чисел во вто­рой груп­пе равно В. (Для груп­пы из един­ствен­но­го числа сред­нее ариф­ме­ти­че­ское равно этому числу.)

а)  При­ве­ди­те при­мер раз­би­е­ния ис­ход­ных чисел на две груп­пы, при ко­то­ром сред­нее ариф­ме­ти­че­ское всех чисел мень­ше  дробь: чис­ли­тель: A плюс B, зна­ме­на­тель: 2 конец дроби .

б)  До­ка­жи­те, что если раз­бить ис­ход­ные числа на две груп­пы по 15 чисел, то сред­нее ариф­ме­ти­че­ское всех чисел будет равно  дробь: чис­ли­тель: A плюс B, зна­ме­на­тель: 2 конец дроби .

в)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: A плюс B, зна­ме­на­тель: 2 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

8
Тип 19 № 514643
i

По­сле­до­ва­тель­ность a_1,a_2,...,a_6 со­сто­ит из не­от­ри­ца­тель­ных од­но­знач­ных чисел. Пусть Mk  — сред­нее ариф­ме­ти­че­ское всех чле­нов этой по­сле­до­ва­тель­но­сти, кроме k-го. Из­вест­но, что M1  =  1, M2  =  2.

а)  при­ве­ди­те при­мер такой по­сле­до­ва­тель­но­сти, для ко­то­рой M3  =  1,6.

б)  су­ще­ству­ет ли такая по­сле­до­ва­тель­ность, для ко­то­рой M3  =  3?

в)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние M3.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

9
Тип 19 № 513925
i

Верно ли, что для лю­бо­го на­бо­ра по­ло­жи­тель­ных чисел, каж­дое из ко­то­рых не пре­вос­хо­дит 11, а сумма ко­то­рых боль­ше 110, все­гда можно вы­брать не­сколь­ко чисел так, чтобы их сумма была не боль­ше 110, но боль­ше: 

а)  99;

б)  101;

в)  100.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.