Вариант № 8862244

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 512323
i

В квар­ти­ре уста­нов­лен при­бор учёта рас­хо­да хо­лод­ной воды (счётчик). По­ка­за­ния счётчика 1 фев­ра­ля со­став­ля­ли 142 куб. м воды, а 1 марта  — 156 куб. м. Сколь­ко нужно за­пла­тить за хо­лод­ную воду за фев­раль, если сто­и­мость 1 куб. м хо­лод­ной воды со­став­ля­ет 22 руб. 50 коп.? Ответ дайте в руб­лях.


Ответ:

2
Тип Д1 № 512324
i

На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­на цена ни­ке­ля на мо­мент за­кры­тия бир­же­вых тор­гов во все ра­бо­чие дни с 6 по 20 мая 2009 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа ме­ся­ца, по вер­ти­ка­ли  — цена тонны ни­ке­ля в дол­ла­рах США. Для на­гляд­но­сти жир­ные точки на ри­сун­ке со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку наи­мень­шую цену ни­ке­ля на мо­мент за­кры­тия тор­гов в ука­зан­ный пе­ри­од. Ответ дайте в дол­ла­рах США за тонну.


Ответ:

3
Тип Д5 № 512325
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1×1 изоб­ражён тре­уголь­ник ABC. Най­ди­те длину его вы­со­ты, опу­щен­ной на про­дол­же­ние сто­ро­ны AB.


Ответ:

4
Тип 4 № 512326
i

В не­ко­то­ром го­ро­де из 2000 по­явив­ших­ся на свет мла­ден­цев 980 де­во­чек. Най­ди­те ча­сто­ту рож­де­ния маль­чи­ков в этом го­ро­де.


Ответ:

5

Най­ди­те ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 51 минус 5x конец ар­гу­мен­та =6.


Ответ:

6
Тип 1 № 512328
i

Около окруж­но­сти, ра­ди­ус ко­то­рой равен 3, опи­сан мно­го­уголь­ник, пе­ри­метр ко­то­ро­го равен 50. Най­ди­те его пло­щадь.


Ответ:

7
Тип 8 № 512329
i

На ри­сун­ке изоб­ражён гра­фик функ­ции y  =  f(x), опре­делённой на ин­тер­ва­ле (−3; 8). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y  =  1.

ИЛИ

Ма­те­ри­аль­ная точка дви­жет­ся от на­чаль­но­го до ко­неч­но­го по­ло­же­ния. На ри­сун­ке изоб­ражён гра­фик её дви­же­ния. На оси абс­цисс от­кла­ды­ва­ет­ся время в се­кун­дах, на оси ор­ди­нат  — рас­сто­я­ние от на­чаль­но­го по­ло­же­ния точки (в мет­рах). Най­ди­те сред­нюю ско­рость дви­же­ния точки. Ответ дайте в мет­рах в се­кун­ду.


Ответ:

8
Тип 3 № 512330
i

Най­ди­те пло­щадь по­верх­но­сти мно­го­гран­ни­ка, изоб­ражённого на ри­сун­ке (все дву­гран­ные углы пря­мые).


Ответ:

9

10
Тип 9 № 512332
i

Если до­ста­точ­но быст­ро вра­щать ведёрко с водой на верёвке в вер­ти­каль­ной плос­ко­сти, то вода не будет вы­ли­вать­ся. При вра­ще­нии ведёрка сила дав­ле­ния воды на дно не остаётся по­сто­ян­ной: она мак­си­маль­на в ниж­ней точке и ми­ни­маль­на в верх­ней. Вода не будет вы­ли­вать­ся, если сила её дав­ле­ния на дно будет по­ло­жи­тель­ной во всех точ­ках тра­ек­то­рии, кроме верх­ней, где она может быть рав­ной нулю. В верх­ней точке сила дав­ле­ния, вы­ра­жен­ная в нью­то­нах, равна P=m левая круг­лая скоб­ка дробь: чис­ли­тель: v в квад­ра­те , зна­ме­на­тель: L конец дроби минус g пра­вая круг­лая скоб­ка , где m  — масса воды в ки­ло­грам­мах, υ   — ско­рость дви­же­ния ведёрка в м/с, L  — длина верёвки в мет­рах, g  — уско­ре­ние сво­бод­но­го па­де­ния (счи­тай­те g  =  10 м/с2). С какой наи­мень­шей ско­ро­стью надо вра­щать ведёрко, чтобы вода не вы­ли­ва­лась, если длина верёвки равна 44,1 см? Ответ вы­ра­зи­те в м/с.


Ответ:

11
Тип 10 № 512333
i

Име­ет­ся два спла­ва. Пер­вый сплав со­дер­жит 5% меди, вто­рой  — 12% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 3 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го спла­ва. Ответ дайте в ки­ло­грам­мах.


Ответ:

12

13
Тип 13 № 512335
i

а)  Ре­ши­те урав­не­ние  левая круг­лая скоб­ка тан­генс в квад­ра­те x минус 1 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 13 ко­си­нус x конец ар­гу­мен­та =0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 512336
i

На ребре AA1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1 взята точка E так, что A1E : EA  =  1 : 2, на ребре BB1  — точка F так, что B1F : FB  =  1 : 5, а точка T  — се­ре­ди­на ребра B1C1. Из­вест­но, что AB  =  4, AD  =  2, AA1  =  6.

а)  До­ка­жи­те, что плос­кость EFT про­хо­дит через вер­ши­ну D1.

б)  Най­ди­те угол между плос­ко­стью EFT и плос­ко­стью BB1C1.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 512337
i

15.1 Ре­ши­те не­ра­вен­ство 0,5 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 10x плюс 25 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка минус x в квад­ра­те плюс 7x минус 10 пра­вая круг­лая скоб­ка \geqslant3.

 

15.2 Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: x, зна­ме­на­тель: x в квад­ра­те плюс 3 конец дроби мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби x в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 512338
i

Дана рав­но­бед­рен­ная тра­пе­ция KLMN с ос­но­ва­ни­я­ми KN и LM. Окруж­ность с цен­тром O, по­стро­ен­ная на бо­ко­вой сто­ро­не KL как на диа­мет­ре, ка­са­ет­ся бо­ко­вой сто­ро­ны MN и вто­рой раз пе­ре­се­ка­ет боль­шее ос­но­ва­ние KN в точке H, точка Q  — се­ре­ди­на MN.

а)  До­ка­жи­те, что четырёхуголь­ник NQOH  — па­рал­ле­ло­грамм.

б)  Най­ди­те KN, если  \angle LKN = 75 гра­ду­сов и LM  =  1.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 512339
i

Про­из­вод­ство x тыс. еди­ниц про­дук­ции об­хо­дит­ся в q  =  0,5x2 + x + 7 млн руб. в год. При цене p тыс. руб. за еди­ни­цу го­до­вая при­быль от про­да­жи этой про­дук­ции (в млн руб.) со­став­ля­ет px − q. При каком наи­мень­шем зна­че­нии p через три года сум­мар­ная при­быль со­ста­вит не менее 75 млн руб.?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 512340
i

Най­ди­те все це­ло­чис­лен­ные зна­че­ния па­ра­мет­ра а, при каж­дом из ко­то­рых си­сте­ма

 си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус a пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус a пра­вая круг­лая скоб­ка в квад­ра­те конец ар­гу­мен­та =4,x в квад­ра­те минус |a плюс 1|x минус 2a в квад­ра­те =3 конец си­сте­мы .

имеет един­ствен­ное ре­ше­ние.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 512341
i

Из­вест­но, что a, b, c, и d  — по­пар­но раз­лич­ные по­ло­жи­тель­ные дву­знач­ные числа.

а)  Может ли вы­пол­нять­ся ра­вен­ство  дробь: чис­ли­тель: a плюс c, зна­ме­на­тель: b плюс d конец дроби = дробь: чис­ли­тель: 9, зна­ме­на­тель: 23 конец дроби ?

б)  Может ли дробь  дробь: чис­ли­тель: a плюс c, зна­ме­на­тель: b плюс d конец дроби быть в 11 раз мень­ше, чем сумма  дробь: чис­ли­тель: a, зна­ме­на­тель: b конец дроби плюс дробь: чис­ли­тель: c, зна­ме­на­тель: d конец дроби ?

в)  Какое наи­мень­шее зна­че­ние может при­ни­мать дробь  дробь: чис­ли­тель: a плюс c, зна­ме­на­тель: b плюс d конец дроби , если a боль­ше 5b и c боль­ше 8d?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.