Каталог заданий.
Задачи на оптимальный выбор

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 16 № 508321
i

В 1-⁠е клас­сы по­сту­па­ет 45 че­ло­век: 20 маль­чи­ков и 25 де­во­чек. Их рас­пре­де­ли­ли по двум клас­сам: в одном долж­но по­лу­чить­ся 22 че­ло­ве­ка, а в дру­гом  ― 23. После рас­пре­де­ле­ния по­счи­та­ли про­цент де­во­чек в каж­дом клас­се и по­лу­чен­ные числа сло­жи­ли. Каким долж­но быть рас­пре­де­ле­ние по клас­сам, чтобы по­лу­чен­ная сумма была наи­боль­шей?


Аналоги к заданию № 508321: 508394 Все


2
Тип 16 № 511227
i

В рас­по­ря­же­нии на­чаль­ни­ка име­ет­ся бри­га­да ра­бо­чих в со­ста­ве 24 че­ло­век. Их нужно рас­пре­де­лить на день на два объ­ек­та. Если на пер­вом объ­ек­те ра­бо­та­ет t че­ло­век, то их су­точ­ная зар­пла­та со­став­ля­ет 4t2 у. е. Если на вто­ром объ­ек­те ра­бо­та­ет t че­ло­век, то их су­точ­ная зар­пла­та со­став­ля­ет t2 у. е. Как нужно рас­пре­де­лить на эти объ­ек­ты бри­га­ду ра­бо­чих, чтобы вы­пла­ты на их су­точ­ную зар­пла­ту ока­за­лись наи­мень­ши­ми? Сколь­ко у. е. в этом слу­чае при­дет­ся за­пла­тить ра­бо­чим?


Аналоги к заданию № 511227: 551765 Все


3
Тип 16 № 511234
i

Два ве­ло­си­пе­ди­ста рав­но­мер­но дви­жут­ся по вза­им­но пер­пен­ди­ку­ляр­ным до­ро­гам по на­прав­ле­нию к пе­ре­крест­ку этих дорог. Один из них дви­жет­ся со ско­ро­стью 40 км/ч и на­хо­дит­ся на рас­сто­я­нии 5 км от пе­ре­крест­ка, вто­рой дви­жет­ся со ско­ро­стью 30 км/⁠ч и на­хо­дит­ся на рас­сто­я­нии 3 км от пе­ре­крест­ка. Через сколь­ко минут рас­сто­я­ние между ве­ло­си­пе­ди­ста­ми ста­нет наи­мень­шим? Ка­ко­во будет это наи­мень­шее рас­сто­я­ние? Счи­тай­те, что пе­ре­кре­сток не T-⁠об­раз­ный, обе до­ро­ги про­дол­жа­ют­ся за пе­ре­крест­ком.


4
Тип 16 № 511887
i

Алек­сей вышел из дома на про­гул­ку со ско­ро­стью υ км/ч. После того, как он про­шел 6 км, из дома сле­дом за ним вы­бе­жа­ла со­ба­ка Жучка, ско­рость ко­то­рой была на 9 км/⁠ч боль­ше ско­ро­сти Алек­сея. Когда Жучка до­гна­ла хо­зя­и­на, они по­вер­ну­ли назад и вме­сте воз­вра­ти­лись домой со ско­ро­стью 4 км/⁠ч. Най­ди­те зна­че­ние υ, при ко­то­ром время про­гул­ки Алек­сея ока­жет­ся наи­мень­шим. Сколь­ко при этом со­ста­вит время его про­гул­ки?


5
Тип 16 № 511894
i

В бас­сейн про­ве­де­ны три трубы. Пер­вая труба на­ли­ва­ет 30 м3 воды в час. Вто­рая труба на­ли­ва­ет в час на 3V м3 мень­ше, чем пер­вая (0 < V < 10), а тре­тья труба на­ли­ва­ет в час на 10V м3 боль­ше пер­вой. Сна­ча­ла пер­вая и вто­рая трубы, ра­бо­тая вме­сте, на­ли­ва­ют 30% бас­сей­на, а затем все три трубы, ра­бо­тая вме­сте, на­ли­ва­ют остав­ши­е­ся 0,7 бас­сей­на. При каком зна­че­нии V бас­сейн быст­рее всего на­пол­нит­ся ука­зан­ным спо­со­бом?


Пройти тестирование по этим заданиям