Вариант № 13780028

Пробный экзамен Санкт-Петербург, 11.04.2017. Вариант 2.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задания Д2 № 323833

На бензоколонке один литр бензина стоит 35 руб. 60 коп. Водитель залил в бак 15 литров бензина и купил бутылку воды за 23 рубля. Сколько рублей сдачи он получит с 1000 рублей?


Ответ:

2
Задания Д1 № 77181

На рисунке жирными точками показано суточное количество осадков, выпадавших в Казани с 3 по 15 февраля 1909 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней из данного периода выпадало от 3 до 7 миллиметров осадков.


Ответ:

3
Задания Д4 № 322727

На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 2. Найдите площадь заштрихованной фигуры.


Ответ:

4
Тип 10 № 513335

Вероятность того, что на тестировании по математике учащийся П. верно решит больше 7 задач, равна 0,78. Вероятность того, что П. верно решит больше 6 задач, равна 0,89. Найдите вероятность того, что П. верно решит ровно 7 задач.


Ответ:

5
Тип 1 № 105891

Решите уравнение  логарифм по основанию (x минус 1) 81=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.


Ответ:

6
Тип 3 № 54275

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 9 и 4, считая от вершины, противолежащей основанию. Найдите периметр треугольника.


Ответ:

7
Тип 6 № 27495

На рисунке изображен график производной функции f(x), определенной на интервале (−18; 6). Найдите количество точек минимума функции f(x) на отрезке [−13;1].


Ответ:

8
Тип 5 № 76485

Найдите площадь боковой поверхности правильной треугольной призмы, вписанной в цилиндр, радиус основания которого равен 8 корень из (3) , а высота равна 6.


Ответ:

9
Тип 4 № 97869

Найдите значение выражения  дробь: числитель: 12 синус 22 в степени (\circ) , знаменатель: косинус 11 в степени (\circ) умножить на косинус 79 в степени (\circ) конец дроби .


Ответ:

10
Тип 7 № 516807

Расстояние от наблюдателя, находящегося на высоте h м над землёй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле l = корень из ( дробь: числитель: Rh, знаменатель: 500 конец дроби ) , где R = 6400 км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 3,2 км. К пляжу ведёт лестница, каждая ступенька которой имеет высоту 15 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?


Ответ:

11
Тип 8 № 323859

Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 1,5 км от дома. Один идёт со скоростью 2,2 км/ч, а другой — со скоростью 4,4 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча? Ответ дайте в километрах.


Ответ:

12
Тип 11 № 514185

Найдите точку минимума функции y = (1 минус 2x) косинус x плюс 2 синус x плюс 7, принадлежащую промежутку  левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка .


Ответ:

13
Тип 12 № 516779

а) Решите уравнение: 9 в степени (x) минус 3 в степени (x плюс 2) плюс 14=0.

б) Определите, какие из его корней принадлежат отрезку [1; корень из (5) ].


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 13 № 516780

В параллелепипеде ABCDA1B1C1D1 точка F середина ребра AB, а точка E делит ребро DD1 в отношении DE : ED1 = 6 : 1. Через точки F и E проведена плоскость α, параллельная прямой AC и пересекающая диагональ B1D в точке О.

а) Докажите, что плоскость α делит диагональ DB1 в отношении DO : OB1 = 2 : 3.

б) Найдите угол между плоскостью α и плоскостью (ABC), если дополнительно известно, что ABCDA1B1C1D1 — правильная четырехугольная призма, сторона основания которой равна 4, а высота равна 7.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 14 № 516781

Решите неравенство  дробь: числитель: 2x в квадрате плюс 3x минус 5, знаменатель: \log _5(x в квадрате плюс 4x плюс 4) конец дроби больше или равно 0.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 16 № 516782

Окружность проходит через вершины A и B параллелограмма ABCD, пересекает стороны AD и BC в точках M и N соответственно и касается стороны CD.

а) Докажите, что точки C, D, M и N лежат на одной окружности.

б) Найдите длину отрезка AD, зная, что BM = a, MD = b, NC = c.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 15 № 516783

Георгий взял кредит в банке на сумму 804 000 рублей. Схема выплата кредита такова: в конце каждого года банк увеличивает на 10 процентов оставшуюся сумму долга, а затем Георгий переводит в банк свой очередной платеж. Известно, что Георгий погасил кредит за три года, причем каждый его следующий платеж был ровно вдвое меньше предыдущего. Какую сумму Георгий заплатил в третий раз? Ответ дайте в рублях.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 17 № 516784

Найдите все такие значения параметра a, при каждом из которых уравнение  корень из ( косинус x минус a синус x) = корень из (a косинус x минус синус x) имеет решения на отрезке  левая квадратная скобка дробь: числитель: Пи , знаменатель: 4 конец дроби ; дробь: числитель: 5 Пи , знаменатель: 4 конец дроби правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 18 № 516785

Дано квадратное уравнение ax в квадрате минус bx плюс c=0, где a, b, c — натуральные числа, не превосходящие 200. Также известно, что числа a, b и c попарно отличаются друг от друга не менее, чем на 2.

а) Может ли такое уравнение иметь корень 9?

б) Может ли такое уравнение иметь корень 135?

в) Какой наибольший целый корень может иметь такое уравнение?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.