математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Каталог заданий.
Расстояние от точки до прямой и до плоскости
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 14 № 513097

В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB = 12 и Длины боковых рёбер пирамиды SA = 5, SB = 13, SD = 10.

а) Докажите, что SA — высота пирамиды.

б) Найдите расстояние от вершины A до плоскости SBC.


Аналоги к заданию № 513097: 509977 Все

Источник: Материалы для экспертов ЕГЭ 2016

2
Задание 14 № 511106

В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 4, точка N — середина ребра AC, точка O центр основания пирамиды, точка P делит отрезок SO в отношении 3 : 1, считая от вершины пирамиды.

а) Докажите, что прямая NP перпендикулярна прямой BS.

б) Найдите расстояние от точки B до прямой NP.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко. 2016 г.

3
Задание 14 № 514245

В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2.

а) Докажите, что плоскость PQR перпендикулярна ребру SD.

б) Найдите расстояние от вершины D до плоскости PQR.


Аналоги к заданию № 514245: 517752 Все

Источник: За­да­ния 14 (С2) ЕГЭ 2015
Решение · ·

4
Задание 14 № 514447

В правильной треугольной призме АВСА1В1С1 сторона основания АВ равна 6, а боковое ребро АА1 равно 3. На ребре АВ отмечена точка К так, что АК = 1. Точки М и L — середины рёбер А1С1 и В1С1 соответственно. Плоскость γ параллельна прямой АС и содержит точки К и L.

а) Докажите, что прямая ВМ перпендикулярна плоскости γ;

б) Найдите расстояние от точки С до плоскости γ.


Аналоги к заданию № 514447: 514541 Все

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ — 2016 по математике. Ос­нов­ная волна 06.06.2016. Вариант 410. Запад

5
Задание 14 № 514474

В правильной четырёхугольной призме АВСDА1В1С1D1 сторона АВ основания равна 6, а боковое ребро АА1 равно На ребрах BC и C1D1 отмечены точки К и L соответственно, причём ВК = 4, C1L = 5. Плоскость γ параллельна прямой BD и содержит точки К и L.

а) Докажите, что прямая AC1 перпендикулярна плоскости γ;

б) Найдите расстояние от точки B1 до плоскости γ.


Аналоги к заданию № 514474: 514527 514534 514653 Все

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Юг (C часть).

6
Задание 14 № 514480

В правильной четырёхугольной пирамиде SABCD сторона AB основания равна 16, а высота пирамиды равна 4. На рёбрах AB, CD и AS отмечены точки M, N и K соответственно, причём AM = DN = 4 и AK = 3.

а) Докажите, что плоскости MNK и SBC параллельны.

б) Найдите расстояние от точки M до плоскости SBC.

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ — 2016. Ос­нов­ная волна по математике 06.06.2016. Вариант 437. Юг

7
Задание 14 № 514603

На рёбрах CD и BB1 куба ABCDA1B1C1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP = 4, а B1Q = 3. Плоскость APQ пересекает ребро CC1 в точке М.

а) Докажите, что точка М является серединой ребра CC1.

б) Найдите расстояние от точки С до плоскости APQ.


Аналоги к заданию № 514603: 514617 514631 Все

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 601 (C часть).
Решение · ·

8
Задание 14 № 514624

В правильной треугольной призме ABCA1B1C1 сторона AB основания равна 12, а высота призмы равна 2. На рёбрах B1C1 и AB отмечены точки P и Q соответственно, причём PC1 = 3, а AQ = 4. Плоскость A1PQ пересекает ребро BC в точке M.

а) Докажите, что точка M является серединой ребра BC.

б) Найдите расстояние от точки B до плоскости A1PQ.

Источник: За­да­ния 14 (С2) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Вариант 701 (C часть).

9
Задание 14 № 514655

В основании прямой треугольной призмы ABCA1B1C1 лежит прямоугольный треугольник ABC с прямым углом C, AC = 4, BC = 16, Точка Q — середина ребра A1B1, а точка P делит ребро B1C1 в отношении 1 : 2, считая от вершины C1. Плоскость APQ пересекает ребро CC1 в точке M.

а) Докажите, что точка M является серединой ребра CC1.

б) Найдите расстояние от точки A1 до плоскости APQ.

Источник: За­да­ния 14 (С2) ЕГЭ 2016

10
Задание 14 № 517200

В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB =  4 и диагональю BD =  7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF =  BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.


Аналоги к заданию № 517200: 517238 Все


Пройти тестирование по этим заданиям