СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Каталог заданий.
Объёмы многогранников

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 14 № 512357

Все рёбра правильной треугольной пирамиды SBCD с вершиной S равны 9.

Основание O высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра SB , точка L лежит на ребре CD так, что CL : LD = 7 : 2.

а) Докажите, что сечение пирамиды SBCD плоскостью S1LM — равнобедренная трапеция.

б) Вычислите длину средней линии этой трапеции.


Аналоги к заданию № 512357: 513347 512399 513366 Все

Классификатор стереометрии: Деление отрезка, Правильная треугольная пирамида, Сечение -- трапеция, Сечение, проходящее через три точки
Решение · · Видеокурс · Курс Д. Д. Гущина ·

2
Задание 14 № 513094

В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 8. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите объём пирамиды, вершиной которой является точка C, а основанием — сечение пирамиды SABC плоскостью α.

Источник: Материалы для экспертов ЕГЭ 2016
Классификатор стереометрии: Деление отрезка, Объем тела, Правильная треугольная пирамида, Сечение, параллельное или перпендикулярное плоскости

3
Задание 14 № 513253

В пирамиде SABC в основании лежит правильный треугольник ABC со стороной Точка O — основание высоты пирамиды, проведённой из вершины S.

а) Докажите, что точка O лежит вне треугольника ABC.

б) Найдите объём четырёхугольной пирамиды SABCO.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Классификатор стереометрии: Объем тела, Пирамида

4
Задание 14 № 513276

В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания равна 8. Точка L — середина ребра SC. Тангенс угла между прямыми BL и SA равен

а) Пусть O — центр основания пирамиды. Докажите, что прямые BO и LO перпендикулярны.

б) Найдите площадь поверхности пирамиды.


Аналоги к заданию № 513276: 514723 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Методы геометрии: Теорема о трёх перпендикулярах
Классификатор стереометрии: Перпендикулярность прямых, Площадь поверхности, Правильная четырёхугольная пирамида

5
Задание 14 № 513347

Все рёбра правильной четырёхугольной пирамиды SABCD с вершиной S равны 6. Основание высоты SO этой пирамиды является серединой отрезка SS1, M — середина ребра AS, точка L лежит на ребре BC так, что BL : LC = 1 : 2.

а) Докажите, что сечение пирамиды SABCD плоскостью S1LM — равнобокая трапеция.

б) Вычислите длину средней линии этой трапеции.


Аналоги к заданию № 512357: 513347 512399 513366 Все

Классификатор стереометрии: Деление отрезка, Правильная четырёхугольная пирамида, Сечение -- трапеция, Сечение, проходящее через три точки

Пройти тестирование по этим заданиям