СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 17 № 514477

В июле 2016 года планируется взять кредит в банке на три года в размере S млн рублей, где Sцелое число. Условия его возврата таковы:

− каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;

− с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

− в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей

 

Месяц и годИюль 2016Июль 2017Июль 2018Июль 2019
Долг

(в млн рублей)

S0,7S0,4S0

 

Найдите наименьшее значение S, при котором каждая из выплат будет больше 5 млн рублей.

Решение.

Долг перед банком (в млн рублей) на июль каждого года должен уменьшаться до нуля следующим образом:

По условию, в январе каждого года долг увеличивается на 25%, значит, долг в январе каждого года равен:

Следовательно, выплаты с февраля по июнь каждого года составляют:

По условию, каждая из выплат должна быть больше 5 млн рублей. Это будет верно, если минимальная из выплат больше 5 млн рублей то есть если Тогда:

Наименьшее целое решение этого неравенства — число 11. Значит, искомый размер кредита — 11 млн рублей.

 

Ответ: 11.

Источник: За­да­ния 17 (С5) ЕГЭ 2016, ЕГЭ по математике 06.06.2016. Ос­нов­ная волна. Юг (C часть).
Раздел кодификатора ФИПИ/Решу ЕГЭ: Задачи о кредитах, Банки, вклады, кредиты