Вариант № 10929508

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 318583
i

Си­сте­ма на­ви­га­ции самолёта ин­фор­ми­ру­ет пас­са­жи­ра о том, что полёт про­хо­дит на вы­со­те 37 000 футов. Вы­ра­зи­те вы­со­ту полёта в мет­рах. Счи­тай­те, что 1 фут равен 30,5 см.


Ответ:

2
Тип 5 № 509078
i

Маша кол­лек­ци­о­ни­ру­ет прин­цесс из Кин­дер-сюр­при­зов. Всего в кол­лек­ции 10 раз­ных прин­цесс, и они рав­но­мер­но рас­пре­де­ле­ны, то есть в каж­дом оче­ред­ном Кин­дер-сюр­при­зе может с рав­ны­ми ве­ро­ят­но­стя­ми ока­зать­ся любая из 10 прин­цесс. У Маши уже есть две раз­ные прин­цес­сы из кол­лек­ции. Ка­ко­ва ве­ро­ят­ность того, что для по­лу­че­ния сле­ду­ю­щей прин­цес­сы Маше придётся ку­пить ещё 2 или 3 шо­ко­лад­ных яйца?


Ответ:

3

Най­ди­те пло­щадь тре­уголь­ни­ка, изоб­ра­жен­но­го на ри­сун­ке.


Ответ:

4

В кар­ма­не у Пети было 4 мо­не­ты по рублю и 2 мо­не­ты по два рубля. Петя, не глядя, пе­ре­ло­жил какие-то 3 мо­не­ты в дру­гой кар­ман. Най­ди­те ве­ро­ят­ность того, что обе двух­рублёвые мо­не­ты лежат в одном кар­ма­не.


Ответ:

5
Тип 6 № 103523
i

Ре­ши­те урав­не­ние  тан­генс дробь: чис­ли­тель: Пи левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 6 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец дроби . В от­ве­те на­пи­ши­те наи­мень­ший по­ло­жи­тель­ный ко­рень.


Ответ:

6
Тип Д6 № 27295
i

В тре­уголь­ни­ке ABC AC  =  BC  =  5,  ко­си­нус A = дробь: чис­ли­тель: 7, зна­ме­на­тель: 25 конец дроби . Най­ди­те вы­со­ту СН.


Ответ:

7

Пря­мая y= минус 9x плюс 5 яв­ля­ет­ся ка­са­тель­ной к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =ax в квад­ра­те плюс 15x плюс 11. Най­ди­те a.


Ответ:

8
Тип 3 № 25723
i

Най­ди­те пло­щадь по­верх­но­сти мно­го­гран­ни­ка, изоб­ра­жен­но­го на ри­сун­ке (все дву­гран­ные углы пря­мые).


Ответ:

9
Тип 7 № 26862
i

Най­ди­те зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в квад­ра­те 49.


Ответ:

10
Тип 9 № 513899
i

Груз мас­сой 0,25 кг ко­леб­лет­ся на пру­жи­не. Его ско­рость υ ме­ня­ет­ся по за­ко­ну  v = v _0 синус дробь: чис­ли­тель: 2 Пи t, зна­ме­на­тель: T конец дроби , где t  — время с мо­мен­та на­ча­ла ко­ле­ба­ний, T  =  18 с  — пе­ри­од ко­ле­ба­ний,  v _0=0,4 м/с. Ки­не­ти­че­ская энер­гия E (в джо­у­лях) груза вы­чис­ля­ет­ся по фор­му­ле E= дробь: чис­ли­тель: m v в квад­ра­те , зна­ме­на­тель: 2 конец дроби , где m  — масса груза в ки­ло­грам­мах, υ   — ско­рость груза в м/с. Най­ди­те ки­не­ти­че­скую энер­гию груза через 6 се­кунд после на­ча­ла ко­ле­ба­ний. Ответ дайте в джо­у­лях.


Ответ:

11
Тип 10 № 99578
i

Име­ют­ся два со­су­да. Пер­вый со­дер­жит 30 кг, а вто­рой  — 20 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если эти рас­тво­ры сме­шать, то по­лу­чит­ся рас­твор, со­дер­жа­щий 68% кис­ло­ты. Если же сме­шать рав­ные массы этих рас­тво­ров, то по­лу­чит­ся рас­твор, со­дер­жа­щий 70% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом со­су­де?


Ответ:

12

13
Тип 13 № 485991
i

а)  Ре­ши­те урав­не­ние  ко­си­нус в квад­ра­те дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби минус синус в квад­ра­те дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби = синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус 2x пра­вая круг­лая скоб­ка .

б)  Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи , дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14

В пра­виль­ную четырёхуголь­ную пи­ра­ми­ду, бо­ко­вое ребро ко­то­рой равно 10, а вы­со­та равна 6, впи­са­на сфера. (Сфера ка­са­ет­ся всех гра­ней пи­ра­ми­ды.)

а)  До­ка­жи­те, что дву­гран­ный угол при ос­но­ва­нии пи­ра­ми­ды боль­ше 45 гра­ду­сов.

б)  Най­ди­те пло­щадь впи­сан­ной сферы.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 507691
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: левая круг­лая скоб­ка x в квад­ра­те плюс x пра­вая круг­лая скоб­ка \lg левая круг­лая скоб­ка x в квад­ра­те плюс 2x минус 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: |x минус 1| конец дроби боль­ше или равно дробь: чис­ли­тель: \lg левая круг­лая скоб­ка минус x в квад­ра­те минус 2x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x минус 1 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип Д14 C4 № 484618
i

Че­ты­рех­уголь­ник KLMN опи­сан около окруж­но­сти и впи­сан в окруж­ность. Пря­мые KL и NM пе­ре­се­ка­ют­ся в точке P. Най­ди­те пло­щадь тре­уголь­ни­ка KPN, если из­вест­но, что ∠KPN = φ и ра­ди­у­сы окруж­но­стей, впи­сан­ных в тре­уголь­ни­ки KPN и LMP равны со­от­вет­ствен­но r и R.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 11 № 509205
i

На ри­сун­ке изоб­ра­же­ны гра­фи­ки функ­ций вида f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =kx плюс b, ко­то­рые пе­ре­се­ка­ют­ся в точке A. Най­ди­те абс­цис­су точки A.


Ответ:

18

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние

| левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка в квад­ра­те минус 4 в сте­пе­ни левая круг­лая скоб­ка 1 минус a пра­вая круг­лая скоб­ка | плюс |x минус 1| плюс левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка в квад­ра­те плюс 4 в сте­пе­ни левая круг­лая скоб­ка a минус 1 пра­вая круг­лая скоб­ка =16 плюс 16 в сте­пе­ни a

имеет един­ствен­ное ре­ше­ние. Най­ди­те это ре­ше­ние для каж­до­го зна­че­ния a.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип Д18 C7 № 484665
i

Най­ди­те не­со­кра­ти­мую дробь  дробь: чис­ли­тель: p, зна­ме­на­тель: q конец дроби такую, что  дробь: чис­ли­тель: p, зна­ме­на­тель: q конец дроби = дробь: чис­ли­тель: 1234567\overbrace888...8 в сте­пе­ни левая круг­лая скоб­ка 2000 пра­вая круг­лая скоб­ка 7654321, зна­ме­на­тель: 12345678\underbrace999...9_199987654321 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.