≡ математика
сайты - меню - вход - новости




Каталог заданий.
Окружности и треугольники

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задания Д11 C4 № 484610

В треугольнике ABC, AB = 15, BC = 7, CA = 9. Точка D лежит на прямой BC причем BD : DC = 5 : 7. Окружности, вписанные в каждый из треугольников ADC и ADB касаются стороны AD в точках E и F. Найдите длину отрезка EF.


Аналоги к заданию № 484610: 484611 507177 507178 507179 507180 507181 507182 507183 511299 511300 Все

Решение · ·

2
Задания Д11 C4 № 507176

Расстояние между параллельными прямыми равно 4. На одной из них лежит точка C, а на другой — точки A и B, причем треугольник ABC — равнобедренный и его боковая сторона равна 5. Найдите радиус окружности, вписанной в треугольник ABC.

Решение · ·

3
Задания Д11 C4 № 507494

Расстояние между параллельными прямыми равно 12. На одной из них лежит точка C, а на другой — точки A и B, причем треугольник ABC — остроугольный равнобедренный и его боковая сторона равна 13. Найдите радиус окружности, вписанной в треугольник ABC.


4
Задания Д11 C4 № 507498

Расстояние между параллельными прямыми равно 4. На одной из них лежит точка C, а на другой — точки A и B, причем треугольник ABC — остроугольный равнобедренный, и его боковая сторона равна 5. Найдите радиус окружности, вписанной в треугольник ABC.


5
Задания Д11 C4 № 507598

Окружность, вписанная в треугольник ABC, площадь которого равна 114, касается средней линии, параллельной стороне BC. Известно, что BC = 19. Найдите сторону AB.


6
Задания Д11 C4 № 507632

Дан треугольник ABC со сторонами AB = 25, AC = 7 и BC = 24. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = 8 и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.


7
Задания Д11 C4 № 507771

Радиус окружности, описанной около треугольника ABC, равен 13, высота, проведённая к стороне BC, равна 5. Найдите длину той хорды AM описанной окружности, которая делится пополам стороной BC.


Аналоги к заданию № 507771: 511488 Все


8
Задания Д11 C4 № 507818

Точки D и E — основания высот непрямоугольного треугольника ABC, проведённых из вершин A и C соответсвенно. Известно, что BC = a и AB = b. Найдите сторону AC, если известно, что: а) треугольник остроугольный, б) угол B тупой.


9
Задания Д11 C4 № 484611

В треугольнике ABC, AB = 7, BC = 9, CA = 4. Точка D лежит на прямой BC причем BD : DC = 1 : 5. Окружности, вписанные в треугольники ADC и ADB касаются стороны AD в точках E и F. Найдите длину отрезка EF.


10
Задания Д11 C4 № 501438

Расстояние между параллельными прямыми равно 12. На одной из них лежит вершина C, на другой — основание AB равнобедренного треугольника ABC. Известно, что AB = 10. Найдите расстояние между центрами окружностей, одна из которых вписана в треугольник ABC, а вторая касается данных параллельных прямых и боковой стороны треугольника ABC.


Аналоги к заданию № 501438: 485970 501458 514708 Все

Решение · ·

11
Задания Д11 C4 № 484620

Расстояние между параллельными прямыми равно 12. На одной из них лежит точка C, а на другой — точки A и B, причем треугольник ABC — равнобедренный и его боковая сторона равна 13. Найдите радиус окружности, вписанной в треугольник ABC.


Аналоги к заданию № 484620: 507176 507494 507498 Все


12
Задания Д11 C4 № 500134

В треугольнике ABC известны стороны: AB = 7, BC = 8, AC = 9. Окружность, проходящая через точки A и C, пересекает прямые BA и BC соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL.


Аналоги к заданию № 500134: 500369 500590 500593 501069 511338 Все

Источник: ЕГЭ по математике 07.06.2012 года, основная волна.

13
Задания Д11 C4 № 500369

В треугольнике ABC известны стороны: AB = 5, BC = 6, AC = 7. Окружность, проходящая через точки A и C, пересекает прямые AB и BC соответственно в точках K и L, отличных от вершин треугольника. Отрезок KL касается окружности, вписанной в треугольник ABC. Найдите длину отрезка KL.


14
Задания Д11 C4 № 484624

Прямая, перпендикулярная боковой стороне равнобедренного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок прямой, заключённый внутри треугольника, равен 6, а отношение боковой стороны треугольника к его основанию равно 


Аналоги к заданию № 484624: 484625 485949 485957 511305 Все


15
Задания Д11 C4 № 484625

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырехугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 12, а косинус острого угла равен


16
Задания Д11 C4 № 485949

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 14, а отношение катетов треугольника равно


17
Задания Д11 C4 № 485957

Прямая, перпендикулярная гипотенузе прямоугольного треугольника, отсекает от него четырёхугольник, в который можно вписать окружность. Найдите радиус окружности, если отрезок этой прямой, заключённый внутри треугольника, равен 40, а отношение катетов треугольника равно


18
Задания Д11 C4 № 485937

Точка M лежит на отрезке AB. На окружности с диаметром AB взята точка C, удаленная от точек A, M и B на расстояния 20, 14 и 15 соответственно. Найдите площадь треугольника BMC.


Аналоги к заданию № 485937: 485945 511325 507627 Все


19
Задания Д11 C4 № 485945

Точка M лежит на отрезке AB. На окружности с диаметром AB взята точка C, удаленная от точек A, M и B на расстояния 40, 29 и 30 соответственно. Найдите площадь треугольника BMC.


20
Задания Д11 C4 № 485985

Дан прямоугольный треугольник ABC с катетами AC = 15 и BC = 8. С центром в вершине B проведена окружность S радиуса 17. Найдите радиус окружности, вписанной в угол BAC и касающейся окружности S.


Аналоги к заданию № 485985: 485999 511328 Все


21
Задания Д11 C4 № 485999

Дан прямоугольный треугольник ABC с катетами AC = 5 и BC = 12. С центром в вершине B проведена окружность S радиуса 13. Найдите радиус окружности, вписанной в угол BAC и касающейся окружности S.


22
Задания Д11 C4 № 500349

Дан треугольник со сторонами 115, 115 и 184. Внутри него расположены две равные касающиеся окружности, каждая из которых касается двух сторон треугольника. Найдите радиусы окружностей.

Решение · ·

23
Задания Д11 C4 № 500066

Дан треугольник со сторонами 26, 26 и 20. Внутри него расположены две равные касающиеся окружности, каждая из которых касается двух сторон треугольника. Найдите радиусы окружностей.


Аналоги к заданию № 500066: 500349 511334 Все

Решение · ·

24
Задания Д11 C4 № 500195

Точка O — центр правильного шестиугольника ABCDEF со стороной 7. Найдите радиус окружности, касающейся окружностей, описанных около треугольников BOD, DOF и BOF.


Аналоги к заданию № 500195: 500476 511339 Все


25
Задания Д11 C4 № 500476

Точка О — центр правильного шестиугольника ABCDEF, в котором AC = 10,5. Найдите радиус окружности, касающейся окружностей, описанных около треугольников AOB, COD и EOF.


26
Задания Д11 C4 № 500215

Продолжение биссектрисы CD неравнобедренного треугольника ABC пересекает окружность, описанную около этого треугольника, в точке E. Окружность, описанная около треугольника ADE, пересекает прямую AC в точке F, отличной от A. Найдите радиус окружности, описанной около треугольника ABC, если AC = 4, AF = 2, ∠BAC = 60°.


Аналоги к заданию № 500215: 500389 507357 511341 Все

Раздел: Планиметрия
Источник: ЕГЭ 10.07.2012 по математике. Вто­рая волна. Ва­ри­ант 501.
Решение · ·

27
Задания Д11 C4 № 500389

Продолжение биссектрисы CD неравнобедренного треугольника ABC пересекает окружность, описанную около этого треугольника, в точке E. Окружность, описанная около треугольника ADE, пересекает прямую AC в точке F, отличной от A. Найдите радиус окружности, описанной около треугольника ABC, если AC = 6, AF = 3, угол BAC равен 45°.


28
Задания Д11 C4 № 500410

Угол C треугольника ABC равен 60°, D — отличная от A точка пересечения окружностей, построенных на сторонах AB и AC как на диаметрах. Известно, что DB : DC = 1 : 3. Найдите угол A.


Аналоги к заданию № 500410: 500430 502025 502056 503323 503363 511343 Все


29
Задания Д11 C4 № 500430

Угол C треугольника ABC равен 60°, D — отличная от A точка пересечения окружностей, построенных на сторонах AB и AC как на диаметрах. Известно, что DB : DC = 2 : 3. Найдите угол A.


30
Задания Д11 C4 № 500964

Вневписанной окружностью треугольника называется окружность, касающаяся одной стороны треугольника и продолжений двух других его сторон. Радиусы двух вневписанных окружностей прямоугольного треугольника равны 7 и 17. Найдите расстояние между их центрами.


Аналоги к заданию № 500964: 511349 Все


31
Задания Д11 C4 № 501398

Стороны AB и BC треугольника ABC равны соответственно 26 и 14,5, а его высота BD равна 10. Найдите расстояние между центрами окружностей, вписанных в треугольники ABD и BCD.


Аналоги к заданию № 501398: 501418 511356 Все

Источник: Проб­ный экзамен по математике. Санкт-Петербург 2013. Вариант 1.

32
Задания Д11 C4 № 501418

Стороны KM и MN треугольника KMN равны соответственно 30 и 25, а его высота MH равна 24. Найдите расстояние между центрами окружностей, вписанных в треугольники KMH и MNH.


33
Задания Д11 C4 № 502117

Окружность радиуса вписана в прямой угол. Вторая окружность также вписана в этот угол и пересекается с первой в точках M и N. Известно, что расстояние между центрами окружностей равно 12. Найдите MN.


Аналоги к заданию № 502117: 502137 503255 511375 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 23.04.2013. До­сроч­ная волна. Ва­ри­ант 901.

34
Задания Д11 C4 № 502137

Окружность радиуса вписана в прямой угол. Вторая окружность также вписана в этот угол и пересекается с первой в точках M и N. Известно, что расстояние между центрами окружностей равно 16. Найдите MN.


35
Задания Д11 C4 № 484614

Высота равнобедренного треугольника, опущенная на основание, равна 9, а радиус вписанной в треугольник окружности равен 4. Найдите радиус окружности, касающейся стороны треугольника и продолжений двух его сторон.


Аналоги к заданию № 484614: 511303 Все

Решение · ·

36
Задания Д11 C4 № 485990

Дан треугольник ABC со сторонами AB = 15, AC = 9 и BC = 12. На стороне BC взята точка D, а на отрезке AD — точка O, причем CD = 4 и AO = 3OD. Окружность с центром O проходит через точку C. Найдите расстояние от точки C до точки пересечения этой окружности с прямой AB.


Аналоги к заданию № 485990: 507632 507504 507683 511439 511472 Все


37
Задания Д11 C4 № 500450

Боковые стороны AB и CD трапеции ABCD равны 6 и 8 соответственно. Отрезок, соединяющий середины диагоналей, равен 5, средняя линия трапеции равна 25. Прямые AB и CD пересекаются в точке M. Найдите радиус окружности, вписанной в треугольник BMC.


38
Задания Д11 C4 № 500818

На стороне BA угла ABC, равного 30°, взята такая точка D, что AD = 2 и BD = 1. Найдите радиус окружности, проходящей через точки A и D и касающейся прямой BC.

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2013 по математике.
Решение · ·

39
Задания Д11 C4 № 500920

Окружность, вписанная в треугольник АВС, площадь которого равна 66, касается средней линии, параллельной стороне ВС. Известно, что ВС = 11. Найдите сторону АВ.


Аналоги к заданию № 500920: 507598 511448 Все


40
Задания Д11 C4 № 503255

Окружность радиуса 6 вписана в угол, равный 60°. Вторая окружность также вписана в этот угол и пересекается с первой в точках M и N . Известно, что расстояние между центрами окружностей равно 4. Найдите MN.


41
Задания Д11 C4 № 513686

Окружность, вписанная в треугольник KLM, касается сторон KL, LM и MK в точках A, B и C соответственно.

а) Докажите, что

б) Найдите отношение BL : BM, если известно, что KC : CM = 3 : 2 и


Аналоги к заданию № 513686: 513716 Все

Источник: Пробный эк­за­мен по про­филь­ной математике Санкт-Петербург 05.04.2016. Ва­ри­ант 1.

42
Задания Д11 C4 № 513716

Окружность, вписанная в треугольник ABC, касается сторон AB, BC и CA в точках K, M и N соответственно.

а) Докажите, что

б) Найдите отношение AK : KB, если известно, что AN : NC = 4 : 3 и


43
Задания Д11 C4 № 517427

Из середины катета прямоугольного треугольника на его гипотенузу опущен перпендикуляр, длина которого равна 1. Найдите радиус окружности, вписанной в прямоугольный треугольник, если длина одного из его катетов равна 4.

Источник: РЕШУ ЕГЭ

Пройти тестирование по этим заданиям