СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Каталог заданий.
Многоугольники и их свойства

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 16 № 505501

В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.

а) докажите, что биссектриса угла С делит отрезок МN пополам

б) пусть Р — точка пересечения биссектрис треугольника АВС. Найдите отношение АР : РN.

Источник: ЕГЭ по математике 19.06.2014. Основная волна, резервный день. Запад. Вариант 1.
Методы геометрии: Свойства биссектрис
Классификатор планиметрии: Многоугольники и их свойства

2
Задание 16 № 507262

Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причём ∠BEC = 120°.

а) Докажите, что ∠CBE = ∠COE.

б) Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE = 24.


Аналоги к заданию № 507262: 511418 Все

Классификатор планиметрии: Многоугольники и их свойства

3
Задание 16 № 508974

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AC = 3MB.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите сумму квадратов медиан AA1 и CC1, если известно, что AC = 12.


Аналоги к заданию № 505537: 508974 509003 511579 Все

Методы геометрии: Свойства медиан
Классификатор планиметрии: Многоугольники и их свойства
Решение · · Курс 80 баллов · Курс Д. Д. Гущина ·

4
Задание 16 № 513281

На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.

а) Докажите, что

б) Найдите расстояние от точки M до центров квадратов, если AC = 10, BC = 32 и ∠ACB = 30°.


Аналоги к заданию № 513281: 515784 514716 515708 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016
Методы геометрии: Теорема косинусов
Классификатор планиметрии: Многоугольники и их свойства

5
Задание 16 № 504546

На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.

а) Докажите, что точки A, B, K и E лежат на одной окружности.

б) Найдите радиус этой окружности, если AB = 12, CH = 5.


Аналоги к заданию № 504546: 504567 Все

Методы геометрии: Теорема синусов

Пройти тестирование по этим заданиям