Каталог заданий.
Числа и их свойства

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 18 № 502027

Дано трёхзначное натуральное число (число не может начинаться с нуля), не кратное 100.

а) Может ли частное этого числа и суммы его цифр быть равным 90?

б) Может ли частное этого числа и суммы его цифр быть равным 88?

в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?


Аналоги к заданию № 502027: 521670 502058 503325 503365 511370 Все

Источник: ЕГЭ по математике 10.06.2013. Вторая волна. Центр. Вариант 601., Задания 19 (С7) ЕГЭ 2013
Классификатор алгебры: Числа и их свойства
Решение · · Курс Д. Д. Гущина ·

2
Тип 18 № 505570

За победу в шахматной партии начисляют 1 очко, за ничью ─ 0,5 очка, за проигрыш ─ 0 очков. В турнире принимают участие m мальчиков и d девочек, причём каждый играет с каждым дважды.

а) Каково наибольшее количество очков, которое в сумме могли набрать девочки, если m = 3, d = 2?

б) Какова сумма набранных всеми участниками очков, если m + d = 10.

в) Каковы все возможные значения d, если m = 7d и известно, что в сумме мальчики набрали ровно в 3 раза больше очков, чем девочки?


Аналоги к заданию № 505570: 508112 507244 Все

Источник: РЕШУ ЕГЭ — Предэкзаменационная работа 2014 по математике.
Классификатор алгебры: Числа и их свойства

3
Тип 18 № 508112

За победу в шахматной партии начисляют 1 очко, за ничью — 0,5 очка, за проигрыш — 0 очков. В турнире принимают участие m мальчиков и d девочек, причём каждый играет с каждым дважды.

а) Каково наибольшее количество очков, которое в сумме могли набрать девочки, если m = 2, d = 2?

б) Какова сумма набранных всеми участниками очков, если m + d = 10?

в) Каковы все возможные значения d, если известно, что в сумме мальчики набрали ровно в 3 раза больше очков, чем девочки?


Аналоги к заданию № 505570: 508112 507244 Все

Источник: А. Ларин: Тренировочный вариант № 87.
Классификатор алгебры: Числа и их свойства

4
Тип 18 № 509326

Известно, что a, b, c, и d — попарно различные положительные двузначные числа.

а) Может ли выполняться равенство  дробь: числитель: a плюс c, знаменатель: b плюс d конец дроби = дробь: числитель: 7, знаменатель: 19 конец дроби .

б) Может ли дробь  дробь: числитель: a плюс c, знаменатель: b плюс d конец дроби быть в 11 раз меньше, чем сумма  дробь: числитель: a, знаменатель: b конец дроби плюс дробь: числитель: c, знаменатель: d конец дроби ?

в) Какое наименьшее значение может принимать дробь  дробь: числитель: a плюс c, знаменатель: b плюс d конец дроби , если a больше 3b и c больше 6d?


Аналоги к заданию № 509326: 512341 512383 509347 517205 517243 Все

Классификатор алгебры: Числа и их свойства

5
Тип 18 № 511111

Пусть q — наименьшее общее кратное, а d — наибольший общий делитель натуральных чисел x и y, удовлетворяющих равенству 3x = 8y − 29.

а) Может ли  дробь: числитель: q, знаменатель: d конец дроби быть равным 170?

б) Может ли  дробь: числитель: q, знаменатель: d конец дроби быть равным 2?

в) Найдите наименьшее значение  дробь: числитель: q, знаменатель: d конец дроби .


Аналоги к заданию № 511111: 519815 519834 Все

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко. 2016 г.
Классификатор алгебры: Числа и их свойства

Пройти тестирование по этим заданиям