Каталог заданий.
Числа и их свойства

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 19 № 502027
i

Дано трёхзнач­ное на­ту­раль­ное число (число не может на­чи­нать­ся с нуля), не крат­ное 100.

а)  Может ли част­ное этого числа и суммы его цифр быть рав­ным 90?

б)  Может ли част­ное этого числа и суммы его цифр быть рав­ным 88?

в)  Какое наи­боль­шее на­ту­раль­ное зна­че­ние может иметь част­ное дан­но­го числа и суммы его цифр?


Аналоги к заданию № 502027: 521670 660403 502058 ... Все


2
Тип 19 № 505570
i

За по­бе­ду в шах­мат­ной пар­тии на­чис­ля­ют 1 очко, за ничью  — 0,5 очка, за про­иг­рыш  — 0 очков. В тур­ни­ре при­ни­ма­ют уча­стие m маль­чи­ков и d де­во­чек, причём каж­дый иг­ра­ет с каж­дым два­жды.

а)  Ка­ко­во наи­боль­шее ко­ли­че­ство очков, ко­то­рое в сумме могли на­брать де­воч­ки, если m  =  3, d  =  2?

б)  Ка­ко­ва сумма на­бран­ных всеми участ­ни­ка­ми очков, если m + d  =  10.

в)  Ка­ко­вы все воз­мож­ные зна­че­ния d, если m  =  7d и из­вест­но, что в сумме маль­чи­ки на­бра­ли ровно в 3 раза боль­ше очков, чем де­воч­ки?


Аналоги к заданию № 505570: 508112 507244 Все


3
Тип 19 № 508112
i

За по­бе­ду в шах­мат­ной пар­тии на­чис­ля­ют 1 очко, за ничью  — 0,5 очка, за про­иг­рыш  — 0 очков. В тур­ни­ре при­ни­ма­ют уча­стие m маль­чи­ков и d де­во­чек, причём каж­дый иг­ра­ет с каж­дым два­жды.

а)  Ка­ко­во наи­боль­шее ко­ли­че­ство очков, ко­то­рое в сумме могли на­брать де­воч­ки, если m  =  2, d  =  2?

б)  Ка­ко­ва сумма на­бран­ных всеми участ­ни­ка­ми очков, если m + d  =  10?

в)  Ка­ко­вы все воз­мож­ные зна­че­ния d, если из­вест­но, что в сумме маль­чи­ки на­бра­ли ровно в 3 раза боль­ше очков, чем де­воч­ки?


Аналоги к заданию № 505570: 508112 507244 Все


4
Тип 19 № 509591
i

Из­вест­но, что a, b, c, и d  — по­пар­но раз­лич­ные по­ло­жи­тель­ные дву­знач­ные числа.

а)  Может ли вы­пол­нять­ся ра­вен­ство  дробь: чис­ли­тель: a плюс c, зна­ме­на­тель: b плюс d конец дроби = дробь: чис­ли­тель: 7, зна­ме­на­тель: 19 конец дроби .

б)  Может ли дробь  дробь: чис­ли­тель: a плюс c, зна­ме­на­тель: b плюс d конец дроби быть в 11 раз мень­ше, чем сумма  дробь: чис­ли­тель: a, зна­ме­на­тель: b конец дроби плюс дробь: чис­ли­тель: c, зна­ме­на­тель: d конец дроби ?

в)  Какое наи­мень­шее зна­че­ние может при­ни­мать дробь  дробь: чис­ли­тель: a плюс c, зна­ме­на­тель: b плюс d конец дроби , если a боль­ше 3b и c боль­ше 6d?


Аналоги к заданию № 509591: 512341 512383 509612 ... Все


5
Тип 19 № 511111
i

Пусть q  — наи­мень­шее общее крат­ное, а d  — наи­боль­ший общий де­ли­тель на­ту­раль­ных чисел x и y, удо­вле­тво­ря­ю­щих ра­вен­ству 3x = 8y − 29.

а)  Может ли  дробь: чис­ли­тель: q, зна­ме­на­тель: d конец дроби быть рав­ным 170?

б)  Может ли  дробь: чис­ли­тель: q, зна­ме­на­тель: d конец дроби быть рав­ным 2?

в)  Най­ди­те наи­мень­шее зна­че­ние  дробь: чис­ли­тель: q, зна­ме­на­тель: d конец дроби .


Аналоги к заданию № 511111: 519815 519834 Все

Источник: Ти­по­вые те­сто­вые за­да­ния по ма­те­ма­ти­ке, под ре­дак­ци­ей И. В. Ящен­ко. 2016 г.

Пройти тестирование по этим заданиям