Вариант № 24743926

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 26641
i

В уни­вер­си­тет­скую биб­лио­те­ку при­вез­ли новые учеб­ни­ки для трёх кур­сов, по 360 штук для каж­до­го курса. В книж­ном шкафу 9 полок, на каж­дой полке по­ме­ща­ет­ся 25 учеб­ни­ков. Какое наи­мень­шее ко­ли­че­ство шка­фов по­тре­бу­ет­ся, чтобы в них раз­ме­стить все новые учеб­ни­ки?


Ответ:

2
Тип Д1 № 323024
i

На диа­грам­ме по­ка­за­но рас­пре­де­ле­ние вы­плав­ки меди в 10 стра­нах мира (в ты­ся­чах тонн) за 2006 год. Среди пред­став­лен­ных стран пер­вое место по вы­плав­ке меди за­ни­ма­ли США, де­ся­тое место  — Ка­зах­стан. Какое место за­ни­ма­ла Ин­до­не­зия?


Ответ:

3
Тип Д4 № 521984
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1×1 изоб­ражён па­рал­ле­ло­грамм. Най­ди­те длину его мень­шей диа­го­на­ли.


Ответ:

4

По от­зы­вам по­ку­па­те­лей Иван Ива­но­вич оце­нил надёжность двух ин­тер­нет-⁠ма­га­зи­нов. Ве­ро­ят­ность того, что нуж­ный товар до­ста­вят из ма­га­зи­на А, равна 0,8. Ве­ро­ят­ность того, что этот товар до­ста­вят из ма­га­зи­на Б, равна 0,9. Иван Ива­но­вич за­ка­зал товар сразу в обоих ма­га­зи­нах. Счи­тая, что ин­тер­нет-⁠ма­га­зи­ны ра­бо­та­ют не­за­ви­си­мо друг от друга, най­ди­те ве­ро­ят­ность того, что ни один ма­га­зин не до­ста­вит товар.


Ответ:

5

Най­ди­те ко­рень урав­не­ния  2 в сте­пе­ни левая круг­лая скоб­ка 4 минус 2x пра­вая круг­лая скоб­ка = 64.


Ответ:

6
Тип 1 № 27835
i

Пря­мая, про­ве­ден­ная па­рал­лель­но бо­ко­вой сто­ро­не тра­пе­ции через конец мень­ше­го ос­но­ва­ния, рав­но­го 4, от­се­ка­ет тре­уголь­ник, пе­ри­метр ко­то­ро­го равен 15. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

7
Тип 8 № 119976
i

Ма­те­ри­аль­ная точка дви­жет­ся пря­мо­ли­ней­но по за­ко­ну x левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби t в кубе минус 3t в квад­ра­те плюс 2t (где x  — рас­сто­я­ние от точки от­сче­та в мет­рах, t  — время в се­кун­дах, из­ме­рен­ное с на­ча­ла дви­же­ния). Най­ди­те ее ско­рость (в м/⁠с) в мо­мент вре­ме­ни t  =  6 с.


Ответ:

8
Тип 3 № 315131
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1 ребро AB=2, ребро AD= ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , ребро AA_1=2. Точка K  — се­ре­ди­на ребра BB_1. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через точки A_1,D_1 и K.


Ответ:

9
Тип 7 № 26849
i

Най­ди­те зна­че­ние вы­ра­же­ния \log _50,2 плюс \log _0,54.


Ответ:

10
Тип 9 № 28005
i

Плос­кий за­мкну­тый кон­тур пло­ща­дью S = 0,5 м в квад­ра­те на­хо­дит­ся в маг­нит­ном поле, ин­дук­ция ко­то­ро­го рав­но­мер­но воз­рас­та­ет. При этом со­глас­но за­ко­ну элек­тро­маг­нит­ной ин­дук­ции Фа­ра­дея в кон­ту­ре по­яв­ля­ет­ся ЭДС ин­дук­ции, зна­че­ние ко­то­рой, вы­ра­жен­ное в воль­тах, опре­де­ля­ет­ся фор­му­лой \mathcal E_i = aS ко­си­нус альфа , где α  — ост­рый угол между на­прав­ле­ни­ем маг­нит­но­го поля и пер­пен­ди­ку­ля­ром к кон­ту­ру, a = 4 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка Тл/с  — по­сто­ян­ная, S  — пло­щадь за­мкну­то­го кон­ту­ра, на­хо­дя­ще­го­ся в маг­нит­ном поле  (в  м2). При каком ми­ни­маль­ном угле α  (в  гра­ду­сах) ЭДС ин­дук­ции не будет пре­вы­шать 10 в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка В ?


Ответ:

11
Тип 10 № 99612
i

По двум па­рал­лель­ным же­лез­но­до­рож­ным путям друг нав­стре­чу другу сле­ду­ют ско­рый и пас­са­жир­ский по­ез­да, ско­ро­сти ко­то­рых равны со­от­вет­ствен­но 65 км/⁠ч и 35 км/⁠ч. Длина пас­са­жир­ско­го по­ез­да равна 700 мет­рам. Най­ди­те длину ско­ро­го по­ез­да, если время, за ко­то­рое он про­шел мимо пас­са­жир­ско­го по­ез­да, равно 36 се­кун­дам. Ответ дайте в мет­рах.


Ответ:

12

13
Тип 13 № 512356
i

а)  Ре­ши­те урав­не­ние  левая круг­лая скоб­ка 2 ко­си­нус в квад­ра­те x плюс синус x минус 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 5 тан­генс x конец ар­гу­мен­та =0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 514654
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 из­вест­ны длины рёбер: AB  =  4, BC  =  3, AA1  =  2. Точки P и Q  — се­ре­ди­ны рёбер A1B1 и CC1 со­от­вет­ствен­но. Плос­кость APQ пе­ре­се­ка­ет ребро B1C1 в точке K.

а)  До­ка­жи­те, что B1K : KC1  =  2 : 1.

б)  Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1 плос­ко­стью APQ.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 507894
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 2x плюс 1 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс x конец ар­гу­мен­та , зна­ме­на­тель: x в квад­ра­те плюс x минус 1 конец дроби \leqslant0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 513922
i

Пря­мая, про­хо­дя­щая через вер­ши­ну В пря­мо­уголь­ни­ка ABCD, пер­пен­ди­ку­ляр­на диа­го­на­ли АС и пе­ре­се­ка­ет сто­ро­ну АD в точке M, рав­но­уда­лен­ной от вер­шин В и D

а)  До­ка­жи­те, что BM и ВD делят угол В на три рав­ных угла.

б)  Най­ди­те рас­сто­я­ние от точки пе­ре­се­че­ния диа­го­на­лей пря­мо­уголь­ни­ка ABCD до пря­мой СМ, если BC=6 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 512665
i

Лео­нид яв­ля­ет­ся вла­дель­цем двух за­во­дов в раз­ных го­ро­дах. На за­во­дах про­из­во­дят­ся аб­со­лют­но оди­на­ко­вые при­бо­ры, но на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, ис­поль­зу­ет­ся более со­вер­шен­ное обо­ру­до­ва­ние.

В ре­зуль­та­те, если ра­бо­чие на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, тру­дят­ся сум­мар­но 4t3 часов в не­де­лю, то за эту не­де­лю они про­из­во­дят t при­бо­ров; если ра­бо­чие на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, тру­дят­ся сум­мар­но t3 часов в не­де­лю, они про­из­во­дят t при­бо­ров.  

За каж­дый час ра­бо­ты (на каж­дом из за­во­дов) Лео­нид пла­тит ра­бо­че­му 1 ты­ся­чу руб­лей. Не­об­хо­ди­мо, чтобы за не­де­лю сум­мар­но про­из­во­ди­лось 20 при­бо­ров. Какую наи­мень­шую сумму при­дет­ся тра­тить вла­дель­цу за­во­дов еже­не­дель­но на опла­ту труда ра­бо­чих?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 512886
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 дробь: чис­ли­тель: 5a, зна­ме­на­тель: a минус 3 конец дроби умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка =49 в сте­пе­ни левая круг­лая скоб­ка |x| пра­вая круг­лая скоб­ка плюс дробь: чис­ли­тель: 6a плюс 7, зна­ме­на­тель: a минус 3 конец дроби

имеет ровно два раз­лич­ных корня.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 514744
i

Рас­смот­рим част­ное трёхзнач­но­го числа, в за­пи­си ко­то­ро­го нет нулей, и про­из­ве­де­ния его цифр.

а)  При­ве­ди­те при­мер числа, для ко­то­ро­го это част­ное равно  дробь: чис­ли­тель: 113, зна­ме­на­тель: 27 конец дроби .

б)  Может ли это част­ное рав­нять­ся  дробь: чис­ли­тель: 125, зна­ме­на­тель: 27 конец дроби ?

в)  Какое наи­боль­шее зна­че­ние может при­ни­мать это част­ное, если оно равно не­со­кра­ти­мой дроби со зна­ме­на­те­лем 27?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.