математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Каталог заданий.
Иррациональные уравнения и неравенства

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 10 № 27982

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением км/ч 2 . Скорость вычисляется по формуле , где — пройденный автомобилем путь. Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость 100 км/ч. Ответ выразите в км/ч2 .


2
Задание 10 № 27983

При движении ракеты еe видимая для неподвижного наблюдателя длина, измеряемая в метрах, сокращается по закону , где м – длина покоящейся ракеты, км/с – скорость света, а – скорость ракеты (в км/с). Какова должна быть минимальная скорость ракеты, чтобы еe наблюдаемая длина стала не более 4 м? Ответ выразите в км/с.

Решение · ·

3
Задание 10 № 27984

Наблюдатель находится на высоте h, выраженной в метрах. Расстояние от наблюдателя до наблюдаемой им линии горизонта, выраженное в километрах, вычисляется по формуле , где км — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километров? Ответ выразите в метрах.

Решение · ·

4
Задание 10 № 27985

Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до наблюдаемой им линии горизонта вычисляется по формуле , где  км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. На сколько метров нужно подняться человеку, чтобы расстояние до горизонта увеличилось до 6,4 километров?

Решение · ·

5
Задание 10 № 27986

Расстояние (в км) от наблюдателя, находящегося на высоте h м над землeй, выраженное в километрах, до видимой им линии горизонта вычисляется по формуле , где  км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 4,8 км. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 6,4 километров?

 

Решение · ·

6
Задание 10 № 27987

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a = 5000 км/ч2. Скорость вычисляется по формуле , где — пройденный автомобилем путь. Найдите, сколько километров проедет автомобиль к моменту, когда он разгонится до скорости 100 км/ч.


Аналоги к заданию № 27987: 514183 28385 28387 28389 28391 28393 28395 Все


7
Задание 10 № 263802

Расстояние (в км) от наблюдателя, находящегося на небольшой высоте километров над землeй, до наблюдаемой им линии горизонта вычисляется по формуле , где (км) — радиус Земли. С какой высоты горизонт виден на расстоянии 4 километра? Ответ выразите в километрах.

Источник: Проб­ный экзамен по математике. Санкт-Петербург 2013. Вариант 1.
Решение · ·

8
Задание 10 № 510825

Гоночный автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a км/ч2. Скорость в конце пути вычисляется по формуле где — пройденный автомобилем путь. Определите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 250 метров, приобрести скорость 60 км/ч. Ответ выразите в км/ч2.

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Основная волна. Запад. Ва­ри­ант 1.

9
Задание 10 № 510982

Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной км с постоянным ускорением км/ч 2, вычисляется по формуле Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 100 км/ч. Ответ выразите в км/ч2.

Источник: Проб­ный экзамен по математике. Санкт-Петербург 2013. Вариант 2.

Пройти тестирование по этим заданиям